IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 关于B树和B+树以及数据库索引 -> 正文阅读

[数据结构与算法]关于B树和B+树以及数据库索引

MySQL优化详解请点击

了解红黑树请点击

一.B树

1.特点

对于一个m阶B树来说

  • 任何节点最多m棵子树(子树数量 = 该节点关键字数量+1
  • 根节点关键字数量:1 <= n <= m-1
  • 非根节点关键字数量:m/2 <= n <= m-1
  • 任何一个内部节点的内部关键字是呈递增的
  • 关键字两侧均有指向子树的指针,左边指针指的左子树关键字均小于该节点,右边指针关键字个数均大于该节点
  • 每个关键字都和对应的数据在一块
  • 外部节点不带任何信息,也不存在,代表查找失败

如图是一个5阶B树,可以看到,根节点的关键字个数只有22一个,根据性质,根节点有两棵子树。对于非根节点,最少有5/2=2个关键字,最多有5-1=4个关键字
在这里插入图片描述

2.查找

B树查找分为两个步骤

  • 在B树中找节点(在磁盘进行)
  • 在节点内通过顺序查找或者折半查找找关键字(在内存中进行)

一般活跃B树的根节点是常驻内存的,其余节点位于磁盘

以上图为例

  • 查找22,因为是根节点,内存命中
  • 查找42,根节点查找失败,42>22,一次磁盘IO将右子树[36,45]载入内存,通过比较,42位于36和45的中间节点,再一次磁盘IO将[40,42]载入内存,即可找到42
  • 查找60,通过两次磁盘IO查找失败

3.插入

只需记住一句话即可:满取中向上分裂

满:一个m阶B树,每个节点最多有m-1个关键字,当大于m-1个关键字,该节点就满了

取中:就是取中间的那个关键字,奇数个关键字直接取中间,偶数个则随机取中间两个其中一个

向上分裂:以取中的那个关键字为准,关键字向上一级,两边分裂

示例1

现在有一颗5阶B树,插入了1,2,5,8,再插入一个元素10,该节点会满
在这里插入图片描述
1,2,5,8,10中间关键字5,5向上,两边分裂
在这里插入图片描述

示例2

如图,再插入一个关键字40,会满
在这里插入图片描述

18向上一级,两边分裂
在这里插入图片描述

4.删除

4.1 删除非终端关键字

当被删除的关键字k不是终端节点时,可以用k的前驱或者后继节点k’来代替k,然后再删除k’,关键字k’必定在终端节点中,因此,删除非终端节点变成了删除终端节点!

删除80,先让其前驱78代替80,然后再根据规则删除终端节点78即可
在这里插入图片描述

4.2 删除终端关键字

分为三种情况

4.2.1 无需改动

删除后满足定义,也就是节点关键字个数大于等于m/2,直接删除即可

以5阶B树为例,如果某个节点删除关键字后,其关键字个数仍然大于等于2,不用做调整

删除3,该节点关键字个数为2,直接删除即可
在这里插入图片描述
在这里插入图片描述

4.2.2 兄弟够借

其实逻辑很简单,仔细看下就明白了

兄弟够借:删除后关键字个数小于m/2,但兄弟节点关键字个数借你一个后,其仍满足大于等于m/2

方法:父子换位法

示例1 借右兄弟

删除12,只有9一个关键字了,不符合B树的特点了,但是其右兄弟有3个关键字,借一个出去还剩两个,仍然满足特点,也即兄弟够借
在这里插入图片描述
采用父子换位法,让兄弟节点的关键字(可以看到是最左边的)上去,父节点关键字(可以看到是父节点最右边的关键字)下来合并
在这里插入图片描述

示例2 借左兄弟

删除9,不满足性质,但左兄弟够借
在这里插入图片描述
父子换位法,3上去,5下来合并
在这里插入图片描述

4.2.3 兄弟不够借

兄弟不够借:删除后关键字个数小于m/2,兄弟节点关键字个数只有m/2个,无法借给你

方法:父子合并法

示例1

删除5,不满足B树性质,兄弟也无法借
在这里插入图片描述
18和左兄弟合并,但是此时,根节点有两个关键字,但是只有两个子树,不符合B树性质,于是父节点的关键字3为了保持性质必定会下来)下移合并
在这里插入图片描述

示例2

删除5,兄弟都不够借

在这里插入图片描述
与左兄弟合并,父节点3下来(为了保持性质必定会下来),父子合并
在这里插入图片描述

二.B+树

在这里插入图片描述
对于一个m阶B+树

  • 任何节点最多m棵子树(子树数量 = 节点关键字数量)
  • 根节点关键字数量:1 <= n <= m
  • 非根节点关键字数量:? m/2? <= n <= m
  • 所有叶节点包含全部关键字以及对应记录的指针(数据)
  • 分支节点仅包含下一级的各个子节点的最大值(不包含数据)

B+树查找、插入、删除与B树基本类似。不过在查找时,非叶节点的值等于给定值时,不会停止,而是直到找到叶节点上的关键字为止。所以,在B+树中,无论是否查找成功,每次查找都是一条从根节点到叶节点的路径

三.关于B+树的面试题

1.为什么使用B+树不用B树?

(1)B+树的磁盘读写代价更低

假设我们上图的主键是bigint类型,长度为8字节,InnoDB指针一般为6字节,那么主键+指针一共14节点,而一页有16k=16384字节,所以一页可以有16384/14=1170个主键+指针结构,那么一刻高度为2的B+树的叶子节点可以有1170个,实际开发中一条记录一般为1k,也就是说一页可以放16条数据,那么总共可以放1170*16=18720条记录,所以使用B+的存储能力还是挺强的,同理高度为3的B+树可以存放219024000条记录,所以高度为1-3的B+树就可以存放千万条记录

B树不管非叶子节点还是叶子结点,都会保存数据,这样导致非叶子节点能保存的指针变少,所以想要保存大量数据,只能增加树的高度,而在查询数据时,一般根节点是常驻内存的,一次页的查找代表一次IO,所以B+树的IO次数少,性能好

(2)查询稳定

B+树在查找时,非叶节点的值等于给定值时,不会停止,而是直到找到叶节点上的关键字为止。所以,在B+树中,无论是否查找成功,每次查找都是一条从根节点到叶节点的路径,导致每一个数据的查询效率相当

(3)适合范围查询

B+树只需要去遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作或者说效率太低

2.为什么使用B+树不用红黑树或者平衡树?

1.红黑树常用于存储内存中的有序数据,不适合存储数据库表大数据

2.即使你找到了把红黑树存进硬盘的方法,红黑树查找一个节点最多要查logn层,每一层都是一个内存页,要启动logn次磁盘IO!!!

3.为了解决二叉树数据有序时出现的线性插入树太深问题,平衡树的深度会明显降低,虽然极大提高性能,但是当数据量很大时,树的深度依旧非常大,mysql读取时会消耗大量IO

3.为什么数据库要有主键?

因为 InnoDB 表里面的数据必须要有一个 B+tree 的索引结构来组织、维护我们的整张表的所有数据,从而形成 .idb 文件

4.为什么推荐使用整型自增?

首先整型的占用空间会比字符串小,而且在查找上比大小也会比字符串更快。字符串比大小的时候还要先转换成 ASCII 码再去比较。如果使用自增的话,在插入方面的效率也会提高

不使用自增,可能时不时会往 B+tree 的中间某一位置插入元素,当这个节点位置放满了的时候,节点就要进行分裂操作(效率低)再去维护,有可能树还要进行平衡,又是一个耗性能的操作

都用自增就会永远都往后面插入元素,这样索引节点分裂的概率就会小很多

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-03-30 18:50:35  更:2022-03-30 18:53:53 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 1:58:56-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码