IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 卡尔曼滤波 KF | 扩展卡尔曼滤波 EKF (思路流程和计算公式) -> 正文阅读

[数据结构与算法]卡尔曼滤波 KF | 扩展卡尔曼滤波 EKF (思路流程和计算公式)

前言

本文分析卡尔曼滤波扩展卡尔曼滤波,包括:思路流程、计算公式、简单案例等。滤波算法,在很多场景都有应用,感觉理解其思路和计算过程比较重要。

目录

一、卡尔曼滤波

1.1 KF计算公式

1.2 KF迭代过程

1.3 KF使用说明

二、卡尔曼滤波案例——多目标跟踪

2.1?卡尔曼滤波器——预测阶段

2.2?卡尔曼滤波器——更新阶段

三、扩展卡尔曼滤波 EKF

3.1??EKF计算公式

?3.2 EKF迭代过程

1.3 EKF使用说明


一、卡尔曼滤波

卡尔曼滤波思想由 kalman于 1960 年提出,该方法:

假设状态噪声观测噪声符合高斯分布;

通过观测数据状态量 进行最优估计。

其实质是计算最大后验概率问题,只能应用于线性系统。

1.1 KF计算公式

卡尔曼滤波法的核心问题是:如何建立滤波所需的状态方程观测方程。在实际工作过程中,卡尔曼滤波法将为系统提供最优估计,其前提是系统应具备线性模型,使用卡尔曼滤波法可以简化计算量,并且节数据存储。

在定义系统的 状态方程 和 观测方程 分别如下:

第一条公式:定义 k-1 时刻的状态为x_{k-1}?,其对应的协方差为\hat{P}_{k-1}。k时刻(当前时刻)的状态为x_{k};思路:先用上一时刻的状态,来预估当前时刻的状态x_{k}。?

第二条公式:定义z_{k}为当前时刻的观测值。思路:通过预估当前时刻的状态x_{k}?和观测变量v,来计算观察值

1.2 KF迭代过程

?(1)预测:

?(2)更新:

首先更新卡尔曼增益 K

?然后基于卡尔曼增益 K再更新?更新后验概率分布(即:状态值、协方差)

1.3 KF使用说明

卡尔曼滤波仅适用线性高斯系统, 目前大多数情况下机器人所涉及的状态估计是非线性的, 卡尔曼滤波的结果并不可靠。

针对卡尔曼滤波的缺陷,学者们提出了许多改进方法, 如扩展卡尔曼滤波(EKF)、无损卡尔曼滤波(UKF)、压缩扩展 卡尔曼滤波(CEKF)……。

二、卡尔曼滤波案例——多目标跟踪

多目标跟踪算法的经典算法DeepSort,它是一个两阶段的算法,达到实时跟踪效果,曾被应用于工业开发。

核心思想:使用递归的卡尔曼滤波和逐帧的匈牙利数据关联。

?假定跟踪场景是定义在 8 维状态空间(u, v, γ, h, ?, ?, γ?, ?)中, 边框中心(u, v),宽高比 γ,高度 h 和和它们各自在图像坐标系中的速度。

这里依旧使用的是匀速运动模型,并把(u,v,γ,h)作为对象状态的直接观测量。

在目标跟踪中,需要估计目标的以下两个状态:

?均值(Mean):包含目标的位置和速度信息,由 8 维向量(u, v, γ, h, ?, ?, γ?, ?)表示,其中每个速度值初始化为 0。均值 Mean 可以通过观测矩阵 H 投影到测量空间输出(u,v,γ,h)。

?协方差(Covariance):表示估计状态的不确定性,由 8x8 的对角矩阵表示,矩阵中数字越大则表明不确定性越大。

2.1?卡尔曼滤波器——预测阶段

?step1:首先利用上一时刻 k-1 的后验估计值,通过状态转移矩阵 F 变换,得到当前时刻 k 的先验估计状态

?

其中,状态转移矩阵 F如下:

?

??step2:然后使用上一时刻 k-1 的后验估计协方差来计算当前时刻 k 的先验估计协方差

?

通过上一时刻后验估计均值和方差 估计?当前时刻先验估计均值x和协方差P

实现代码如下:

def predict(self, mean, covariance):
    # mean, covariance 相当于上一时刻的后验估计均值和协方差
    
    std_pos = [
        self._std_weight_position * mean[3],
        self._std_weight_position * mean[3],
        1e-2,
        self._std_weight_position * mean[3]]
    std_vel = [
        self._std_weight_velocity * mean[3],
        self._std_weight_velocity * mean[3],
        1e-5,
        self._std_weight_velocity * mean[3]]

    # 初始化噪声矩阵 Q
    motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))

    # x' = Fx
    mean = np.dot(self._motion_mat, mean)

    # P' = FPF^T + Q
    covariance = np.linalg.multi_dot((
        self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
    
    # 返回当前时刻的先验估计均值 x 和协方差 P
    return mean, covariance

2.2?卡尔曼滤波器——更新阶段

  • step1:首先利用先验估计协方差矩阵 P 和观测矩阵 H 以及测量状态协方差矩阵 R 计算出卡尔曼增益矩阵 K

?

  • step2:然后将卡尔曼滤波器的先验估计值 x 通过观测矩阵 H 投影到测量空间,并计算出与测量值 z 的残差 y

?

?

  • step3:将卡尔曼滤波器的预测值和测量值按照卡尔曼增益的比例相融合,得到后验估计值 x

?

  • step4:计算出卡尔曼滤波器的后验估计协方差

?

?卡尔曼滤波器更新阶段,代码实现:

def update(self, mean, covariance, measurement):

    # 将先验估计的均值和协方差映射到检测空间,得到 Hx' 和 HP'
    projected_mean, projected_cov = self.project(mean, covariance)

    chol_factor, lower = scipy.linalg.cho_factor(
        projected_cov, lower=True, check_finite=False)

    # 计算卡尔曼增益 K
    kalman_gain = scipy.linalg.cho_solve(
        (chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
        check_finite=False).T

    # y = z - Hx'
    innovation = measurement - projected_mean

    # x = x' + Ky
    new_mean = mean + np.dot(innovation, kalman_gain.T)

    # P = (I - KH)P'
    new_covariance = covariance - np.linalg.multi_dot((
        kalman_gain, projected_cov, kalman_gain.T))

    # 返回当前时刻的后验估计均值 x 和协方差 P
    return new_mean, new_covariance

总结一下:

?在目标跟踪中,需要估计目标的以下两个状态:

?均值(Mean):包含目标的位置和速度信息,由 8 维向量(u, v, γ, h, ?, ?, γ?, ?)表示,其中每个速度值初始化为 0。均值 Mean 可以通过观测矩阵 H 投影到测量空间输出(u,v,γ,h)。

?协方差(Covariance):表示估计状态的不确定性,由 8x8 的对角矩阵表示,矩阵中数字越大则表明不确定性越大。

predict 阶段和 update 阶段都是为了计算出卡尔曼滤波的估计均值 x?协方差 P,不同的是前者是基于上一历史状态做出的先验估计,而后者则是融合了测量值信息并作出校正的后验估计

详细参考:多目标跟踪算法 | DeepSort_一颗小树x的博客-CSDN博客_deepsort

三、扩展卡尔曼滤波 EKF

扩展卡尔曼滤波可以通过泰勒展开解决非线性情况下的问题

3.1??EKF计算公式

?其中是展开后得到的一阶偏导项。 在展开过程中省略了次数较高的项将状态估计方程转化为 近似的线性化方程

?3.2 EKF迭代过程

迭代过程与卡尔曼滤波大致相似,?

?(1)预测:

?(2)更新:

首先更新卡尔曼增益 K

?然后基于卡尔曼增益 K再更新?更新后验概率分布(即:状态值、协方差)

其中 R'与 Q' 为线性化后状态方程对应的新的协方差。

1.3 EKF使用说明

扩展卡尔曼滤波可以在非线性的场景下工作。但是,它在计算的时候忽略了展开式的高次项,因此估计会有误差,有可能会导致滤波器发散。

几种滤波器的对比说明

本文直供大家参考学习,谢谢!

参考文献:

[1]?李庆玲,许茂洲,张慧祥. SLAM 后端优化原理研究[J]. 技术设计与试验应用,2020.

[2]?危双丰,庞 帆,刘振彬, 师现杰. 基于激光雷达的同时定位与地图构建方法综述[J]. 计算机应用研究,2020.

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-04-01 23:38:43  更:2022-04-01 23:39:02 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 10:02:29-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码