回溯算法
迷宫算法
回溯算法就是通过程序的递归直到输出结果
最经典的回溯算法的应用就是小老鼠找迷宫
public class maze {
public static void main(String[] args) {
int[][] map = new int[8][7];
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
map[3][1] = 1;
map[3][2] = 1;
map[5][3] = 1;
map[5][4] = 1;
map[5][5] = 1;
System.out.println("小球没有走过的地图");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
setWay(map,1,1);
System.out.println("小球走过并标识过的地图");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
public static boolean setWay(int[][] map, int i, int j) {
if (map[6][5] == 2) {
return true;
} else {
if (map[i][j] == 0) {
map[i][j] = 2;
System.out.println("("+i+","+j+")");
if (setWay(map, i + 1, j)) {
return true;
} else if (setWay(map, i, j + 1)) {
return true;
} else if (setWay(map, i - 1, j)) {
return true;
} else if (setWay(map, i, j - 1)) {
return true;
} else {
map[i][j] = 3;
return false;
}
} else{
return false;
}
}
}
}
这个的思路非常简单设置一个二维数组当此点是否能通行设置,然后就是就是不停的遍历,如果4个方向都遍历了设置成死路。然后返回调用
还有一个经典的案例八皇后问题也是回溯算法的经典应用
八皇后问题
思路
1.首先先创建一个数组存放8个皇后,然后建立方法判断新加入的结点是否和之前的相互冲突
2.编写放置皇后的代码
? 1)首先判断如果n=max则输出并返回上一层
? 2)之后for循环循环放置n个皇后令array[n] = i;
? 3)判断n个皇后放到这里是否可以如果可以放置第n+1个皇后
public class EightQueens {
int max = 9;
int[] array = new int[max];
static int count = 0;
static int judgeCount = 0;
public static void main(String[] args) {
EightQueens queens = new EightQueens();
queens.check(0);
System.out.printf("一共有%d解法", count);
System.out.printf("一共判断冲突的次数%d次", judgeCount);
}
private boolean judge(int n) {
judgeCount++;
for (int i = 0; i < n; i++) {
if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])){
return false;
}
}
return true;
}
private void check(int n){
if (n == max) {
print();
return;
}
for (int i = 0; i < max; i++) {
array[n] = i;
if(judge(n)){
check(n+1);
}
}
}
private void print() {
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}
t() {
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}
|