1. 必需条件
该问题以一质点在时间区间
t
∈
[
t
0
,
t
k
]
t \in \left[ t_0, t_k \right]
t∈[t0?,tk?]内的运动为背景进行研究。因此,逐次给出以下条件:
- 时间区间
t
∈
[
t
0
,
t
k
]
t \in \left[ t_0, t_k \right]
t∈[t0?,tk?] - 边界条件
S
t
a
r
t
=
{
x
(
t
0
)
=
x
10
x
˙
(
t
0
)
=
x
20
?
x
(
n
?
1
)
(
t
0
)
=
x
n
0
Start = \begin{cases} x(t_0) &= x_{10} \\ \dot x(t_0) &= x_{20} \\ \vdots \\ x^{(n-1)}(t_0) &= x_{n0} \end{cases}
Start=????????????x(t0?)x˙(t0?)?x(n?1)(t0?)?=x10?=x20?=xn0??
E
n
d
=
{
x
(
t
k
)
=
x
1
k
x
˙
(
t
k
)
=
x
2
k
?
x
(
n
?
1
)
(
t
k
)
=
x
n
k
End = \begin{cases} x(t_k) &= x_{1k} \\ \dot x(t_k) &= x_{2k} \\ \vdots \\ x^{(n-1)}(t_k) &= x_{nk} \end{cases}
End=????????????x(tk?)x˙(tk?)?x(n?1)(tk?)?=x1k?=x2k?=xnk??共
2
n
2n
2n个边界条件。 - 拉格朗日型性能指标
J
=
∫
t
0
t
k
F
(
t
,
x
,
x
˙
,
?
?
,
x
(
n
)
)
d
t
→
e
x
t
r
.
J = \int _{t_0} ^{t_k} F \left( t, x, \dot x, \cdots, x^{(n)} \right) dt \rightarrow extr.
J=∫t0?tk??F(t,x,x˙,?,x(n))dt→extr.其中
F
F
F中共
(
n
?
1
)
(n-1)
(n?1)个导数,算上
x
x
x本身,共
n
n
n个与
x
x
x相关的项。
2. 计算过程
在这个问题中,
J
J
J极值存在的必要条件不再采用欧拉公式,而是采用欧拉 – 泊松公式:
F
x
?
d
d
t
F
x
˙
+
d
2
d
t
2
F
x
¨
?
?
+
(
?
1
)
n
d
n
d
t
n
F
x
(
n
)
=
0
F_x - \frac{d}{dt} F_{\dot x} + \frac{d^2}{dt^2} F_{\ddot x} - \cdots + (-1)^n \frac{d^n}{dt^n} F_{x^{(n)} } = 0
Fx??dtd?Fx˙?+dt2d2?Fx¨???+(?1)ndtndn?Fx(n)?=0应当注意:欧拉 – 泊松公式只是
J
J
J极值存在的必要条件,但不是充分条件。
J
J
J极值存在的充分条件称为勒让德条件:
F
x
(
n
)
x
(
n
)
=
?
2
F
?
x
(
n
)
x
(
n
)
F_{x^{(n)} x^{(n)}} = \frac{\partial ^2 F}{\partial x^{(n)} x^{(n)}}
Fx(n)x(n)?=?x(n)x(n)?2F?并有:
{
若
F
x
(
n
)
x
(
n
)
>
0
,
则
J
→
m
i
n
若
F
x
(
n
)
x
(
n
)
<
0
,
则
J
→
m
a
x
\begin{cases} 若 \quad F_{x^{(n)} x^{(n)}} > 0, \quad 则J \rightarrow min \\ 若 \quad F_{x^{(n)} x^{(n)}} < 0, \quad 则J \rightarrow max \end{cases}
{若Fx(n)x(n)?>0,则J→min若Fx(n)x(n)?<0,则J→max?
3. 例题
□
\square \quad
□给出一系列条件:
-
t
∈
[
0
,
1
]
t \in \left[ 0, 1 \right]
t∈[0,1];
- 边界条件:
S
t
a
r
t
=
{
x
(
0
)
=
0
x
˙
(
0
)
=
0
Start = \begin{cases} x(0) = 0 \\ \dot x(0) = 0 \end{cases}
Start={x(0)=0x˙(0)=0?
E
n
d
=
{
x
(
1
)
=
1
x
˙
(
1
)
=
0
End = \begin{cases} x(1) = 1 \\ \dot x(1) = 0 \end{cases}
End={x(1)=1x˙(1)=0? - 性能指标:
J
=
∫
0
1
x
¨
2
d
t
→
e
x
t
r
.
J = \int _0 ^ 1 \ddot x ^ 2 dt \rightarrow extr.
J=∫01?x¨2dt→extr.
下面给出求解过程。
解: 由性能指标得知,
F
=
x
¨
2
F = \ddot x ^2
F=x¨2则
F
x
¨
=
2
x
¨
,
F
x
¨
x
¨
=
2
>
0
F_{\ddot x} = 2 \ddot x, \quad F_{\ddot x \ddot x} = 2 > 0
Fx¨?=2x¨,Fx¨x¨?=2>0根据勒让德条件知
J
J
J有最小值。
又:
F
x
=
0
F
x
˙
=
0
F
x
¨
=
2
x
¨
\begin{aligned} F_x &= 0 \\ F_{\dot x} &= 0 \\ F_{\ddot x} &= 2 \ddot x \\ \end{aligned}
Fx?Fx˙?Fx¨??=0=0=2x¨?则根据欧拉 – 泊松公式
F
x
?
d
d
t
F
x
˙
+
d
2
d
t
2
F
x
¨
?
?
+
(
?
1
)
n
d
n
d
t
n
F
x
(
n
)
=
0
?
0
?
0
+
(
2
x
¨
)
′
′
=
0
?
x
(
3
)
=
C
1
?
x
¨
=
C
1
t
+
C
2
?
x
˙
=
1
2
C
1
t
2
+
C
2
t
+
C
3
?
x
=
1
6
C
1
t
3
+
1
2
C
2
t
2
+
C
3
t
+
C
4
F_x - \frac{d}{dt} F_{\dot x} + \frac{d^2}{dt^2} F_{\ddot x} - \cdots + (-1)^n \frac{d^n}{dt^n} F_{x^{(n)} } = 0 \\ \Longrightarrow 0 - 0 + (2 \ddot x ) '' = 0 \\ \Longrightarrow x^{(3)} = C_1 \\ \Longrightarrow \ddot x = C_1 t + C_2 \\ \Longrightarrow \dot x = \frac{1}{2} C_1 t^2 + C_2 t + C_3 \\ \Longrightarrow x = \frac{1}{6} C_1 t^3 + \frac{1}{2} C_2 t^2 + C_3 t + C_4
Fx??dtd?Fx˙?+dt2d2?Fx¨???+(?1)ndtndn?Fx(n)?=0?0?0+(2x¨)′′=0?x(3)=C1??x¨=C1?t+C2??x˙=21?C1?t2+C2?t+C3??x=61?C1?t3+21?C2?t2+C3?t+C4?代入
x
(
0
)
=
0
,
x
(
1
)
=
1
,
x
˙
(
0
)
=
0
,
x
˙
(
1
)
=
0
x(0) = 0, \quad x(1) = 1, \quad \dot x(0) = 0, \quad \dot x(1) = 0
x(0)=0,x(1)=1,x˙(0)=0,x˙(1)=0有:
C
1
=
?
12
,
C
2
=
6
,
C
3
=
C
4
=
0
C_1 = -12, \quad C_2 = 6, \quad C_3 = C_4 = 0
C1?=?12,C2?=6,C3?=C4?=0则得到最优的
x
x
x满足:
x
°
(
t
)
=
?
2
t
3
+
3
t
2
x ^{\circ} (t) = -2t^3 + 3t^2
x°(t)=?2t3+3t2此时性能指标也达到最优:
J
°
=
∫
0
1
x
¨
°
d
t
=
12.
□
J ^{\circ} = \int _0 ^1 \ddot x^{\circ} dt = 12. \quad \square
J°=∫01?x¨°dt=12.□
|