| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 数据结构与算法 -> 数据结构学习笔记 2-1 二叉树(Binary Tree)与 LeetCode真题(Java) -> 正文阅读 |
|
[数据结构与算法]数据结构学习笔记 2-1 二叉树(Binary Tree)与 LeetCode真题(Java) |
2-1 二叉树(Binary Tree)与经典问题二叉树基础知识树形结构树的结构就像是一个链表,但节点的指向由一个变为了多个: 二叉树度是图中的概念,我们可以理解为边,就是每一个节点最多连接两个节点,一个叫左孩子 如果一棵树满足这两个条件的约束,那么它就是一棵二叉树。 二叉树的遍历方式三种二叉树数组存储二叉树我们数据结构所有最基础的结构都是在线性结构基础之上的,我们用数组表示一棵二叉树: 这里就体现完全二叉树的重要性了,因它是连续的,中间没有断层,完全二叉树隐含的向我们表示了它的存储是连续的,所以所有的节点都是连续的;
学习二叉树的作用LeetCode真题经典面试题—二叉树的基本操作LeetCode144. 二叉树的前序遍历难度: 利用递归实现二叉树的前序遍历:根左右 LeetCode题解:代码实现 LeetCode589. N 叉树的前序遍历难度: 二叉树是递归两次,那么 N N N 叉树我们有几个叉就递归几次。 在 N o d e Node Node 类中有一个 c h i l d r e n children children 集合,它存储着一个根节点所有的子节点。 LeetCode题解:代码实现 LeetCode226. 翻转二叉树难度: 这道题为什么可以用递归来做呢?站在 4 4 4 节点的角度,我们只是把 2 2 2 和 7 7 7 进行了翻转,再站在 2 2 2 和 7 7 7 节点的角度我们只是把 1 1 1 和 3 3 3、 6 6 6 和 9 9 9 进行了翻转。 那么这个递归程序应该怎么设计呢?我们要先想清楚要怎么遍历这棵二叉树,其实就是前序遍历,因为我们在上面思考的时候,也是先思考根节点,然后再思考左右节点。 如果我们确定了这道题是前序遍历→根左右,那么左右节点的遍历不需要我们去想,我们只需要仔细思考如何处理根节点。 我们要先把当前根节点左右两边的值翻转,然后再递归的去调换左边、右边的值。 后序遍历也可以,自顶向下或者自底向上,要保证先处理根节点,或者最后处理根节点。 LeetCode题解:代码实现 LeetCode剑指 Offer 32 - II. 从上到下打印二叉树 II难度: 递归方法(dfs:栈) 其实这道题有点像层序遍历,用广搜非常简单,但我们试一下递归能否实现。 我们在递归的时候记录一下层数,哪个节点在第几层我们就把它放到哪层集合中。 最后是从左到右输出,所以我们先遍历这一层的左边,再遍历这一层的右边。 其实这个时候前中后序遍历都可以,我们只需要正确的遍历这棵二叉树即可。 层序遍历方法(bfs:队列) 一层一层的从上到下遍历,也是按照从左到右遍历。 LeetCode题解:两种方法代码实现 对比下来dfs的方法会快一些。 LeetCode107. 二叉树的层序遍历 II难度: 这道题跟上一道题很像,只不过需要我们逆置输出。 可以直接用 LeetCode题解:代码实现 LeetCode103. 二叉树的锯齿形层序遍历难度: 锯齿形遍历,奇数行从左到右输出,偶数行从右到左输出,我们可以只对偶数行的集合进行逆置即可。 LeetCode题解:代码实现 经典面试题—二叉树的进阶操作LeetCode110. 平衡二叉树难度: 什么是一棵平衡二叉树呢? 本题中,一棵高度平衡二叉树定义为:
像这个就是平衡二叉树,因为左子树和右子树的高度差为 1 1 1 , 2 ? 1 = 1 2 - 1 = 1 2?1=1。 但这个就是一棵失衡二叉树了,因为左子树和右子树的高度差为 2 2 2 了, 3 ? 1 = 2 3 - 1 = 2 3?1=2。 其实这道题是后序遍历的思想,判断一棵二叉树是否是二叉平衡树,要先判断它的左边是否失衡,再判断右边是否失衡,最后判断根节点是否失衡。 递归步骤:
LeetCode题解:代码实现 LeetCode112. 路径总和难度: 叶子节点就是没有儿子的节点。 对于这道题,我刚开始的思想就是存储一个 a n s ans ans,遍历到一个节点 a n s + = r o o t . v a l ans += root.val ans+=root.val,最后判断 a n s = = t a r g e t S u m ans == targetSum ans==targetSum; 但是我们可以每遍历一个节点就使 t a r g e t S u m targetSum targetSum 减去当前节点的值, t a r g e t S u m ? ? ?? = r o o t . v a l targetSum\ -\!= root.val targetSum??=root.val; 最后判断 t a r g e t S u m = = r o o t . v a l targetSum== root.val targetSum==root.val,如果相等则返回 t r u e true true。 LeetCode题解:代码实现 LeetCode105. 从前序与中序遍历序列构造二叉树难度: 从这道题开始后面的题就都比较绕了。 给我们一颗树的前序遍历以及中序遍历,让我们把这棵二叉树构造出来。 我们分析示例1,前序遍历 → → → 根左右,中序遍历 → → → 左根右,我们可以分析出 3 3 3 就是根节点, 9 9 9 是左子树的节点, 15 ? 20 ? 7 15\ 20\ 7 15?20?7 是右子树的节点。 接下来我们再判断剩下的值,那么 20 20 20 就是根节点, 15 15 15 和 7 7 7 就分别是左右节点。 我们把大问题分解成了子问题,所以这道题依旧是递归的思想。 因为我们既要参照前序遍历,也要参照中序遍历,所以本题我们可以借助桶排序来存储前序遍历根节点在中序遍历的下标,便于快速找到左右子树。 这里我们用 具体请参考题解中的注释。 LeetCode题解:代码实现 LeetCode222. 完全二叉树的节点个数难度: 求一棵完全二叉树的节点个数,其实就是递归遍历求左子树和右子树的个数,它们两个相加再加上根节点的个数 1 1 1,就是完全二叉树的节点数。 两行代码搞定,一行特判,一行递归左右子树。 这样的递归固然是能求出来所有二叉树节点的个数,但题中问我们的是完全二叉树,他想要的肯定不是这种简单通用的解法,注意题中有一段话:
我们的完全二叉树无非就是这四种情况: 不妨假设左子树的高度为 l l l ,右子树的高度为 r r r,利用完全二叉树的性质:
LeetCode题解:两种方法代码实现 第二种解法才是出题人想要的解法。 LeetCode剑指 Offer 54. 二叉搜索树的第k大节点难度: 二叉搜索树就是左子树比根节点小,右子树比根节点大的树,如图: 其实二叉搜索树很像二分,因为我们二分找到一个端点,左边的值都比端点小,右边的值都比端点大,整个二分展开之后就是二叉搜索树的状态。 二叉搜索树的效率非常高,单次查找可以达到 l o g n logn logn 的级别。 左 子 树 < 根 < 右 子 树 左子树 < 根 < 右子树 左子树<根<右子树,我们可以先求右子树节点的个数 n n n,如果此时 n ? k n \geqslant k n?k,那就说明第 k k k 个大的数一定在右子树,如果不满足,则说明在左子树。 LeetCode题解:代码实现 LeetCode剑指 Offer 26. 树的子结构难度: A A A 中是否有一棵子树长的跟 B B B 一模一样,其实也是遍历这两棵树,我们先拿 B B B 树的根节点与 A A A 树的根节点进行匹配,如果不匹配则往 A A A 树的左右子树遍历,如果匹配则再用 B B B 树的左节点对比该 A A A 树的左节点,右节点依次对比该 A A A 树的右节点,以此类推。 LeetCode题解:代码实现 LeetCode662. 二叉树最大宽度难度: 这道题也是层序遍历,用广搜很好做,但我们依旧先用深搜递归来做。 DFS 最大宽度所在的层,不一定是在最后一层,也有可能是在中间。 我们试着用前序遍历来做,先处理根节点再处理左右节点, 我们在遍历每一层的时候,给每个节点一个编号,把所有节点都标记完后 用编号最大的节点减去编号最小的节点再+1,就是该层的宽度,最后取一个最大宽度。 我们可以用 给每一个节点一个 i n d e x index index 值,如果走向左子树: i n d e x → i n d e x × 2 index → index × 2 index→index×2,走向右子树: i n d e x → i n d e x × 2 + 1 index → index ×2+1 index→index×2+1 该层的宽度就是 i n d e x ? m a p . g e t ( l e v e l ) + 1 index - map.get(level) + 1 index?map.get(level)+1 BFS 原理跟深搜差不多,只不过借助队列来做。 LeetCode题解:两种方法代码实现 LeetCode968. 监控二叉树难度: 把这道最难的题放在压轴。 一个监控,放在树的一个节点上,该监控可以监视到它的父节点、子节点以及它自己,给我们一棵树,问我们需要几个监控,可以监视到所有节点。 我们采用最保守的后序遍历,先把根节点的左右节点都遍历一下,看看是否被监视,如果都没被监视,那么回到根节点,根节点也没有被监视,则在根节点放置一个监控。 每一个节点有三种状态,并对这三种状态设置一个权重(可以理解为这个节点代表的值):
这道题有点像是模拟题,我们要把每一个节点的状态都想清楚,具体参考代码中的注释。 LeetCode题解:代码实现 总结
|
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/6 19:25:05- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |