IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 【数学建模】—— 层次分析法(AHP) -> 正文阅读

[数据结构与算法]【数学建模】—— 层次分析法(AHP)

在这里插入图片描述

层次分析法

The analytic hierarchy process (AHP)
建模比赛中最基础的算法之一,主要用于解决评价类的


解决评价类问题,首先要想到以下三个问题:

  1. 我们评价的目标是什么?
  2. 我们为了达到这个目标有哪几种可以选择的方案?
  3. 评价的标准或者是指标是什么?(我们根据什么东西来评价好坏)

判断矩阵

在这里插入图片描述
总结:上面这是一个 5 × 5 的矩阵,我们记为 A, 对应的元素为 a i j {a}_{ij} aij?

  1. a i j {a}_{ij} aij?表示的意义是,与指标 j 相比, i 的重要程度
  2. 当 i = j 时,两个指标相同,因此同等重要记为 1,这就解释了主对角元素为 1
  3. a i j {a}_{ij} aij? > 0 且满足 a i j {a}_{ij} aij? × a j i {a}_{ji} aji? = 1(我们称满足这一条件的矩阵为正互反矩阵)

实际上,上面这个矩阵就是层次分析法中的**判断矩阵**


一致矩阵

矩阵中每个元素 a i j {a}_{ij} aij? > 0且满足 a i j {a}_{ij} aij? × a j i {a}_{ji} aji? = 1 ,则我们称该矩阵为正互反矩阵

在层次分析法中,我们构造的判断矩阵均是正互反矩阵。

若正互反矩阵满足 a i j {a}_{ij} aij? × a j k {a}_{jk} ajk? = a i k {a}_{ik} aik?,则我们称其为一致矩阵。

一致性检验

在这里插入图片描述

引理:A为n阶方阵,且r(A) = 1,则A有一个特征值tr(A),其余特征值为0

因此,一致矩阵的各行成比例,所以一致矩阵的特征值为1

由引理可知:一致矩阵有一个特征值为n,其余特征值均为0


在这里插入图片描述

若正互反矩阵(判断矩阵)满足 a i j {a}_{ij} aij? × a j k {a}_{jk} ajk? = a i k {a}_{ik} aik?,则我们称其为一致矩阵

引理:n阶正互反矩阵A为一致矩阵时,当且仅当最大特征值 λ m a x = n {\lambda}_{max} = n λmax?=n
且当正互反矩阵A非一致时,一定满足 λ m a x > n {\lambda}_{max}>n λmax?>n

在这里插入图片描述
判断矩阵越不一致时,最大特征值和n相差越大


一致性检验的步骤

第一步:计算一致性指标CI

C I ? = ? λ m a x ? ? ? n n ? ? ? 1 CI\, =\, \frac {{\lambda}_{max}\, -\, n} {n\, -\, 1} CI=n?1λmax??n?

第二步:查找对应的平均随机一致性指标RI

在这里插入图片描述

第三步:计算一致性比例CR

C R = C I R I CR=\frac {CI} {RI} CR=RICI?

如果 CR < 0.1 ,则可认为判断矩阵的一致性可以接受;否则需要对矩阵进行修正

在这里插入图片描述


方法1:算术平均法求权重

第一步:将判断矩阵按照列归一化(每一个元素除以其所在的列)

第二步:将归一化的各列相加(按行求和)

第三步:将相加后得到的向量中每一个元素除以n即可得到权重向量

在这里插入图片描述


几何平均法求权重

第一步:将A的元素按照行相乘得到一个新的列向量

第二步:将新的向量的每个分量开n次方

第三步:对该列向量进一步归一化即可得到权重向量

在这里插入图片描述


层次分析法

层次分析法(The Analytic Hierarchy Process即 AHP)是由美国运筹学家、 匹兹堡大学教授T . L. Saaty于20世纪70年代创立的一种系统分析与决策的综合 评价方法,是在充分研究了人类思维过程的基础上提出来的,它较合理地解 决了定性问题定量化的处理过程。

AHP的主要特点是通过建立递阶层次结构,把人类的判断转化到若干因 素两两之间重要度的比较上,从而把难于量化的定性判断转化为可操作的重 要度的比较上面。在许多情况下,决策者可以直接使用AHP进行决策,极大 地提高了决策的有效性、可靠性和可行性,但其本质是一种思维方式,它把 复杂问题分解成多个组成因素,又将这些因素按支配关系分别形成递阶层次 结构,通过两两比较的方法确定决策方案相对重要度的总排序。整个过程体 现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避 决策者主观判断的


决评价类问题,大家首先要想到以下三个问题:
①我们评价的目标是什么
②我们为了达到这个目标有哪几种可选的方案?
③价的准则或者说指标是什么?(我们根据什么东西来评价好坏)


层次分析法第一步

分析系统中各因素之间的关系,建立系统的递阶层次结构.
在这里插入图片描述


层次分析法第二步

对于同一层次的各元素关于上一层次中某一准则的重要 性进行两两比较,构造两两比较矩阵(判断矩阵)
在这里插入图片描述

构造判断矩阵

在这里插入图片描述


层次分析法第三步

由判断矩阵计算被比较元素对于该准则的相对权重, 并进行一致性检验(检验通过权重才能用)。

三种方法计算权重

  1. 算术平均法
  2. 几何平均法
  3. 特征值法

强烈建议大家在比赛时三种方法都使用

以往的论文利用层次分析法解决实际问题时,都是采用其中某一种方法 求权重,而不同的计算方法可能会导致结果有所偏差。为了保证结果的 稳健性,本文采用了三种方法分别求出了权重后计算平均值,再根据得 到的权重矩阵计算各方案的得分,并进行排序和综合分析,这样避免了 采用单一方法所产生的偏差,得出的结论将更全面、更有效

注:(1)一致矩阵不需要进行一致性检验,只有非一致矩阵的判断矩阵才需要进 行一致性检验;(2)在论文写作中,应该先进行一致性检验,通过检验后再计算 权重,视频中讲解的只是为了顺应计算过程。

层次分析法第四步

根据权重矩阵计算得分,并进行排序。

在这里插入图片描述


层次分析法的一些局限性

(1)评价的决策层不能太多,太多的话n会很大,判断矩阵和一致矩阵差异 可能会很大。

在这里插入图片描述

(2)如果决策层中指标的数据是已知的,那么我们如何利用这些数据来使得 评价的更加准确呢?

在这里插入图片描述

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-04-23 11:02:21  更:2022-04-23 11:02:28 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 7:30:02-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码