IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 【数据结构】时间复杂度和空间复杂度 -> 正文阅读

[数据结构与算法]【数据结构】时间复杂度和空间复杂度

算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间, 在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个数学函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

大O的渐进表示法

    void func1(int N){
        int count = 0;
        for (int i = 0; i < N ; i++) {
            for (int j = 0; j < N ; j++) {
                count++;
            }
        }
        for (int k = 0; k < 2 * N ; k++) {
            count++;
        }
        int M = 10;
        while ((M--) > 0) {
            count++;
        }
        System.out.println(count);
    }

Func1 执行的基本操作次数 : F(N) = N2 + 2 * N + 10
随着N的增大,常数项和一次次方项对结果影响可以忽略不计(正如给你一张5元的兰博基尼代金券😅),所以我们只需要知道大概执行次数,所以要使用大O的渐进表示法。

规则:
	1. 用常数1取代运行时间中的所有加法常数。
	2. 在修改后的运行次数函数中,只保留最高阶项。
	3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

所以Fun1的时间复杂度为O(N2)


另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

在实际中一般情况关注的是算法的最坏运行情况.

常见时间复杂度计算举例

【实例1】

    void func2(int N) {
        int count = 0;
        for (int k = 0; k < 2 * N ; k++) {
            count++;
        } 
        int M = 10;
        while ((M--) > 0) {
            count++;
        } 
        System.out.println(count);
    }
    //o(N)

【实例2】

    void func3(int N, int M) {
        int count = 0;
        for (int k = 0; k < M; k++) {
            count++;
        }
        for (int k = 0; k < N ; k++) {
            count++;
        }
        System.out.println(count);
    }
    //O(M + N)

【实例3】

    void func4(int N) {
        int count = 0;
        for (int k = 0; k < 100; k++) {
            count++;
        }
        System.out.println(count);
    }
    //O(1)

【实例4】-冒泡排序

    void bubbleSort(int[] array) {
        for (int end = array.length; end > 0; end--) {
            boolean sorted = true;
            for (int i = 1; i < end; i++) {
                if (array[i - 1] > array[i]) {
                    Swap(array, i - 1, i);
                    sorted = false;
                }
            } if
            (sorted == true) {
                break;
            }
        }
    }
    //O(N2)

【实例5】-二分查找

    int binarySearch(int[] array, int value) {
        int begin = 0;
        int end = array.length - 1;
        while (begin <= end) {
            int mid = begin + ((end-begin) / 2);
            if (array[mid] < value)
                begin = mid + 1;
            else if (array[mid] > value)
                end = mid - 1;
            else
                return mid;
        }
        return -1;
    }
    //O(㏒?N) 通常情况下我们省略下标2用O(㏒N)表示

【实例6】- 阶乘

    long factorial(int N) {
        return N < 2 ? N : factorial(N-1) * N;
    }
    //O(N)

【实例6】- 斐波那契

    int fibonacci(int N) {
        return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
    }
    //O(2的n次方)

空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法.

【实例1】

    void bubbleSort(int[] array) {
        for (int end = array.length; end > 0; end--) {
            boolean sorted = true;
            for (int i = 1; i < end; i++) {
                if (array[i - 1] > array[i]) {
                    Swap(array, i - 1, i);
                    sorted = false;
                }
            } if
            (sorted == true) {
                break;
            }
        }
    }
    //O(1)

【实例2】

    int[] fibonacci(int n) {
        long[] fibArray = new long[n + 1];
        fibArray[0] = 0;
        fibArray[1] = 1;
        for (int i = 2; i <= n ; i++) {
            fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
        }
        return fibArray;
    }
    //O(N)

【实例3】

    int fibonacci(int N) {
        return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
    }
    //O(N)
  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-04-23 11:02:21  更:2022-04-23 11:04:22 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 8:42:33-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码