0-1背包问题
引言
- 0-1背包问题是指给定n个物品,每个物品均有自己的价值vi和重量wi(i=1,2,…, n),再给定一个背包,其容量为W。要求从n个物品中选出一部分物品装入背包,这部分物品的重量之和不超过背包的容量,且价值之和最大。单个物品要么装入,要么不装入。很多问题都可以抽象成该问题模型,如配载问题、物资调运[1]问题等,因此研究该问题具有较高的实际应用价值。目前,解决0-1背包问题的方法有很多,主要有动态规划法、回溯法、分支限界法、遗传算法、粒子群算法、人工鱼群算法、蚁群算法、模拟退火算法、蜂群算法、禁忌搜索算法等。其中动态规划、回溯法、分支限界法时间复杂性比较高,计算智能算法可能出现局部收敛,不一定能找出问题的最优解。文中在动态规划法的基础上进行了改进,提出一种求解0-1背包问题的算法,该算法每一次执行总能得到问题的最优解,是确定性算法,算法的时间复杂性最坏可能为0(2n)。
本节先用java实现
package day1.java;
import java.util.ArrayList;
import java.util.List;
public class Bag {
static class Item {
String id;
int size = 0;
int value = 0;
static Item newItem(String id, int size, int value) {
Item item = new Item();
item.id = id;
item.size = size;
item.value = value;
return item;
}
public String toString() {
return this.id;
}
}
static class OkBag {
List<Item> Items = new ArrayList<Item>();
OkBag() {
}
int getValue() {
int value = 0;
for (Item item : Items) {
value += item.value;
}
return value;
};
int getSize() {
int size = 0;
for (Item item : Items) {
size += item.size;
}
return size;
};
public String toString() {
return String.valueOf(this.getValue()) + " ";
}
}
static Item[] sourceItems = { Item.newItem("4号球", 4, 5), Item.newItem
("5号球", 5, 6), Item.newItem("6号球", 6, 7) };
static int bagSize = 10;
static int itemCount = sourceItems.length;
static OkBag[][] okBags = new OkBag[itemCount + 1][bagSize + 1];
static void init() {
for (int i = 0; i < bagSize + 1; i++) {
okBags[0][i] = new OkBag();
}
for (int i = 0; i < itemCount + 1; i++) {
okBags[i][0] = new OkBag();
}
}
static void doBag() {
init();
for (int iItem = 1; iItem <= itemCount; iItem++) {
for (int curBagSize = 1; curBagSize <= bagSize; curBagSize++) {
okBags[iItem][curBagSize] = new OkBag();
if (sourceItems[iItem - 1].size > curBagSize) {
okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][curBagSize].Items);
} else {
int notIncludeValue = okBags[iItem - 1][curBagSize].getValue();
int freeSize = curBagSize - sourceItems[iItem - 1].size;
int includeValue = sourceItems[iItem - 1].value + okBags[iItem - 1][freeSize].getValue();
if (notIncludeValue < includeValue) {
okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][freeSize].Items);
okBags[iItem][curBagSize].Items.add(sourceItems[iItem - 1]);
} else {
okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][curBagSize].Items);
}
}
}
}
}
public static void main(String[] args) {
Bag.doBag();
for (int i = 0; i < Bag.itemCount + 1; i++) {
for (int j = 0; j < Bag.bagSize + 1; j++) {
System.out.print(Bag.okBags[i][j].Items);
}
System.out.println("");
}
for (int i = 0; i < Bag.itemCount + 1; i++) {
for (int j = 0; j < Bag.bagSize + 1; j++) {
System.out.print(Bag.okBags[i][j]);
}
System.out.println("");
}
OkBag okBagResult = Bag.okBags[Bag.itemCount][Bag.bagSize];
System.out.println("最终结果为:" + okBagResult.Items.toString() + okBagResult);
}
}
结果
|