IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> JDK7中ConcurrentHashMap源码解析 -> 正文阅读

[数据结构与算法]JDK7中ConcurrentHashMap源码解析

ConcurrentHashMap

数据结构

ConcurrentHashMap的数据结构与HashMap基本类似, 区别在于:

1、内部在数据写入时加了同步机制(分段锁)保证线程安全,读操作是无锁操作;

2、扩容时老数据的转移是并发执行的,这样扩容的效率更高

ConcurrentHashMap 线程安全的具体实现方式

JDK 1.7

ConcurrentHashMap基于ReentrantLock实现分段锁

将数据分为一段一段的存储,然后给每一段数据配一把锁,底层数据结构:Segment 数组 + HashEntry 数组 ,Segment 实现了 ReentrantLock,所以 Segment 是一种可重入锁,扮演锁的角色

在这里插入图片描述

源码分析:

构造函数:


    /**
     * The default initial capacity for this table,
     * used when not otherwise specified in a constructor.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 16;


    /**
     * The default load factor for this table, used when not
     * otherwise specified in a constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;


    /**
     * The default concurrency level for this table, used when not
     * otherwise specified in a constructor.
     */
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;//并发级别,segment数组的大小

	//segment的可以包含数据最大的个数
	static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
	//容量最大值
    static final int MAXIMUM_CAPACITY = 1 << 30;
	//segment里面最小的容量为2
	static final int MIN_SEGMENT_TABLE_CAPACITY = 2;

注意:
    DEFAULT_INITIAL_CAPACITY与DEFAULT_CONCURRENCY_LEVEL结合可以计算出每个segment里有多少个数。个数大致计算等于DEFAULT_INITIAL_CAPACITY/DEFAULT_CONCURRENCY_LEVEL
    
    
    
    public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }


    /**
     * Creates a new, empty map with the specified initial
     * capacity, load factor and concurrency level.
     */
    @SuppressWarnings("unchecked")
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        //检验参数是否合法
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;//记录ssize右移的位数,也就是segment[]容量是2的几次幂
        //表示segment数组的大小
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;//可以保证segment数组的大小是2幂次方的倍数
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        //判断
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;//<< 后将值赋值给cap
        // create segments and segments[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);//cap * loadFactor阈值用于向segment数组进行判断。保证segment长度不会超出
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]
        //将新生成的s0对象放到segment[0]
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

注意:segment的扩容只与segment有关,当一个元素放入segment中时回去判断当前segment对象内部的阈值是多少,是否超过阈值。如果超过就进行扩容,扩容是扩容segment数组。扩容先创建一个扩容后的数组再将数据移入新数组再跟换segment对象。segment数组的长度是不变的。

put方法:

    public V put(K key, V value) {
        Segment<K,V> s;
        //value不可以为空
        if (value == null)
            throw new NullPointerException();
        //取hash值
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment 取第j个位置的元素
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }

static final class Segment<K,V> extends ReentrantLock implements Serializable {

        private static final long serialVersionUID = 2249069246763182397L;

        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;

        /**
         * The per-segment table. 
         */
        transient volatile HashEntry<K,V>[] table;

        /**
         * The number of elements. 
         */
        transient int count;

        /**
         * The total number of mutative operations in this segment.
         */
        transient int modCount;

        /**
         * The table is rehashed when its size exceeds(超出) this threshold.
         */
        transient int threshold;

        /**
         * The load factor(因子) for the hash table.  Even though this value
         * is same for all segments
         */
        final float loadFactor;
    
    
        /**
         * The maximum number of times to tryLock in a prescan before
         * possibly blocking on acquire in preparation for a locked
         * segment operation. On multiprocessors, using a bounded
         * number of retries maintains cache acquired while locating
         * nodes.
         */
        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
    	说明:Runtime.getRuntime().availableProcessors() 返回Java虚拟机可用的处理器数量。

        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
            this.loadFactor = lf;
            this.threshold = threshold;
            this.table = tab;
        }
    
	//这个放法是写在segment内置对象里面的
    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
        		//尝试加锁(segment继承了ReentrantLock),如果获取不到锁调用scanAndLockForPut来获取锁
                HashEntry<K,V> node = tryLock() ? null :
                    scanAndLockForPut(key, hash, value);
                V oldValue;
                try {
                    HashEntry<K,V>[] tab = table;//取得segment数组内部的table
                    int index = (tab.length - 1) & hash;//计算数组的下标
                    HashEntry<K,V> first = entryAt(tab, index);
                    //遍历当前位置的链表
                    for (HashEntry<K,V> e = first;;) {
                        if (e != null) {
                            K k;
                            //查看key是否相等
                            if ((k = e.key) == key ||
                                (e.hash == hash && key.equals(k))) {
                                //记录value值
                                oldValue = e.value;
                                // 如果标记不存在的时候,才进行插入操作
                                if (!onlyIfAbsent) {
                                    e.value = value;
                                    ++modCount;
                                }
                                break;
                            }
                            e = e.next;
                        }
                        else {
                            if (node != null)
                                node.setNext(first);
                            else
                                //创建一个新的hashEntry对象
                                node = new HashEntry<K,V>(hash, key, value, first);
                            int c = count + 1;//count代表segment数组当前位置存储的元素个数
                            //检查是否满足扩容的条件
                            if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                                //将表的大小加倍并重新打包条目,同时将给定的节点添加到新表中
                                rehash(node);//扩容
                            else
                                //把数组放到segment数组内部的table的第i个位置
                                setEntryAt(tab, index, node);//保证是内存里的值,而不是线程里面的值
                            ++modCount;
                            count = c;
                            oldValue = null;
                            break;
                        }
                    }
                } finally {
                    unlock();
                }
                return oldValue;
            }   
    
        /**
         * Scans for a node containing given key while trying to
         * acquire lock, creating and returning one if not found。
         */
    	//当put方法尝试获取锁失败后,调用该方法获取锁
        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
            //获取hash对应
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            HashEntry<K,V> node = null;
            int retries = -1; // negative while locating node
            while (!tryLock()) {
                HashEntry<K,V> f; // to recheck first below
                //根据实际情况来new hashEntry对象
                if (retries < 0) {
                    //first为空或者遍历到了尾节点k
                    if (e == null) {
                        if (node == null) // speculatively create node
                            //创建hashEntry对象
                            node = new HashEntry<K,V>(hash, key, value, null);
                        // 将retries设置为0 , 下次循环时就不进入这个分支(if (retries < 0))
                        retries = 0;
                    }
                    // 遍历到的当前节点中存在相等的key
                    else if (key.equals(e.key))
                        // 将retries设置为0 , 下次循环时就不进入这个分支(if (retries < 0))
                        retries = 0;
                    //first不为空并且key不相等,继续遍历下一个节点
                    else
                        e = e.next;
                }
                // 如果retries > 64(处理器数量大于1)或1(处理器数量小于1)
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                //(retries & 1) == 0 retries为偶数的时候成立
                else if ((retries & 1) == 0 &&	
                         //判断节点是否发生了变化
                         (f = entryForHash(this, hash)) != first) {
                    //如果条目改变,重新遍历
                    e = first = f; // re-traverse if entry changed
                    //重新赋值为-1
                    retries = -1;
                }
            }
            return node;
        }
}



    /**
     * Gets the table entry for the given segment and hash
     */
    @SuppressWarnings("unchecked")
    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
        HashEntry<K,V>[] tab;
        return (seg == null || (tab = seg.table) == null) ? null :
            (HashEntry<K,V>) UNSAFE.getObjectVolatile
            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
    }

	//使用volatile读语义获取给定表的第i个元素(如果非null)。
@SuppressWarnings("unchecked")
static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
    return (tab == null) ? null :
        (HashEntry<K,V>) UNSAFE.getObjectVolatile
        (tab, ((long)i << TSHIFT) + TBASE);
}

注意:

  1. ? put方法将键/值对添加到 hashMap 中
  2. tryLock():先判断当前的这把锁能不能获取到,如果能获取就获取锁并立马返回true,如果不能获取到立即返回false.(不阻塞)
  3. Lock():如果能获取到立即获取到,如果不能获取就阻塞知道获取到锁。
  4. 当调用tryLocak方法尝试获取锁失败调用scanAndLockForPut获取锁的原因:主要原因是锁的选择,我们可以看到scanAndLockForPut方法中获取锁的方式是while (!tryLock()) { //dosomething},用这种方式相较于lock()获取锁,用lock()获取锁会阻塞,但是更不占用cpu。用while (!tryLock()) { //dosomething}获取锁不阻塞,并且更占cpu但是再获取锁的可以做其他的事情。可以做的事情是,new HashEntry()对象,之后可以切换成lock

putIfAbsent方法:

    @SuppressWarnings("unchecked")
    public V putIfAbsent(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject
             (segments, (j << SSHIFT) + SBASE)) == null)
            s = ensureSegment(j);
        return s.put(key, hash, value, true);
    }

注意:如果 hashMap 中不存在指定的键,则将指定的键/值对插入到 hashMap 中。

ensureSegment方法

@SuppressWarnings("unchecked")
    private Segment<K,V> ensureSegment(int k) {
        //获取segment对象数组
        final Segment<K,V>[] ss = this.segments;
        long u = (k << SSHIFT) + SBASE; // raw offset
        Segment<K,V> seg;
        //看segment数组的第u个位置是不是空,不为空说明被另外一个线程生成出来了,那么直接返回就行
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
            int cap = proto.table.length;//ss[0]数组的长度
            float lf = proto.loadFactor;	//table进行扩容的一个阈值,定义map中有多少元素时,map快满了。map size大于这个阈值,则有可能会对table进行扩容
            int threshold = (int)(cap * lf);
            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
            //再次进行检查,当前位置是否为空
            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                == null) { // recheck
                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);//创建对象
                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                       == null) {
                    //尝试将生成的对象放到数组的第u个位置,如果成功就返回
                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                        break;
                }
            }
        }
        return seg;
    }

? 注意:当有多个线程需要向同一个位置生成一个segment对象,当有前面的对象生成了segment对象时,之后的线程只需要使用前面生成的对象就可。

rehash(扩容)方法

        /**
         * The table is rehashed when its size exceeds this threshold.
         * (The value of this field is always <tt>(int)(capacity *
         * loadFactor)</tt>.)
         */
        transient int threshold;//阈值

        /**
         * The load factor for the hash table.  Even though this value
         * is same for all segments, it is replicated to avoid needing
         * links to outer object.
         * @serial
         */
        final float loadFactor;//加载因子

        /**
         * Doubles size of table and repacks entries, also adding the
         * given node to new table
         */
        @SuppressWarnings("unchecked")
        private void rehash(HashEntry<K,V> node) {
            /*
             * Reclassify nodes in each list to new table.  Because we
             * are using power-of-two expansion, the elements from
             * each bin must either stay at same index, or move with a
             * power of two offset. We eliminate unnecessary node
             * creation by catching cases where old nodes can be
             * reused because their next fields won't change.
             * Statistically, at the default threshold, only about
             * one-sixth of them need cloning when a table
             * doubles. The nodes they replace will be garbage
             * collectable as soon as they are no longer referenced by
             * any reader thread that may be in the midst of
             * concurrently traversing table. Entry accesses use plain
             * array indexing because they are followed by volatile
             * table write.
             */
            HashEntry<K,V>[] oldTable = table;//
            int oldCapacity = oldTable.length;
            int newCapacity = oldCapacity << 1;//翻倍
            threshold = (int)(newCapacity * loadFactor);//计算阈值
            //创建一个新的newTable
            HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
            //为了取余 ( hash & (sizeMask-1) )
            int sizeMask = newCapacity - 1;
            //遍历旧数组
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry<K,V> e = oldTable[i];
                //当前元素不为空
                if (e != null) {
                    HashEntry<K,V> next = e.next;
                    //当前元素的hash值(新数组的位置)
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        //将当前节点当前节点放到新数组
                        newTable[idx] = e;
                    else { // Reuse consecutive sequence at same slot
                        //当前元素
                        HashEntry<K,V> lastRun = e;
                        int lastIdx = idx;
                        //遍历当前的列表
                        //最后达到的效果:列表最后连续的需要移动到idx位置的一个或多个元素 放到了新数组的对应位置
                        for (HashEntry<K,V> last = next;
                             last != null;
                             last = last.next) {
                            //计算元素的新的位置
                            int k = last.hash & sizeMask;
                            // k 
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        // 直接将列表最后连续的需要移动到idx位置的一个或多个元素的头部元素地址复制给对应位置的table
                        newTable[lastIdx] = lastRun;
                        // Clone remaining nodes
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            //记录新table中对应下标的元素
                            HashEntry<K,V> n = newTable[k];
                            //头插法,插入数据
                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }
		

		//构造函数
        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

get方法


    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     */
    public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        //根据key来计算hash
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

remove方法


    /**
     * Removes the key (and its corresponding value) from this map.
     * This method does nothing if the key is not in the map. 
     */
	//移除成功返回移除的旧值
    public V remove(Object key) {
        int hash = hash(key);
        //Get the segment for the given hash
        Segment<K,V> s = segmentForHash(hash);
        return s == null ? null : s.remove(key, hash, null);
    }


        /**
         * Remove; match on key only if value null, else match both.
         */
        final V remove(Object key, int hash, Object value) {
            //尝试加锁
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                //Gets the ith element of given table (if nonnull) with volatile read semantics.
                HashEntry<K,V> e = entryAt(tab, index);
                HashEntry<K,V> pred = null;
                while (e != null) {
                    K k;
                    HashEntry<K,V> next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }



        /**
         * Scans for a node containing the given key while trying to
         * acquire lock for a remove or replace operation. Upon
         * return, guarantees that lock is held.  Note that we must
         * lock even if the key is not found, to ensure sequential
         * consistency of updates.
         */
        private void scanAndLock(Object key, int hash) {
            // similar to but simpler than scanAndLockForPut
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            int retries = -1;
            while (!tryLock()) {
                HashEntry<K,V> f;
                if (retries < 0) {
                    if (e == null || key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f;
                    retries = -1;
                }
            }
        }
  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-04-27 11:31:56  更:2022-04-27 11:35:08 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/6 18:12:12-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码