题目:
Given an array of integers?nums ?and an integer?k , return?the number of contiguous subarrays where the product of all the elements in the subarray is strictly less than?k .
Example 1:
Input: nums = [10,5,2,6], k = 100
Output: 8
Explanation: The 8 subarrays that have product less than 100 are:
[10], [5], [2], [6], [10, 5], [5, 2], [2, 6], [5, 2, 6]
Note that [10, 5, 2] is not included as the product of 100 is not strictly less than k.
Example 2:
Input: nums = [1,2,3], k = 0
Output: 0
Constraints:
1 <= nums.length <= 3 * 104 1 <= nums[i] <= 1000 0 <= k <= 106
思路:
左右指针滑动窗口,初始化左右指针都是0,之后右指针一路右移,那么每一次右移,只要积小于k,那么路径上的都符合结果,即一共有right - left + 1种:假设窗口为[left, right],且nums[left] * nums[left + 1] * ...... * nums[right - 1] * nums[right]的积小于k,那么nums[left], nums[left] * nums[left + 1],........, nums[left] * nums[left + 1] *...... nums[right - 1] * nums[right]都是合规的答案,总共就是right - left + 1种。?当积大于等于k的时候,则需要左指针往右移,同时当前积要除以nums[l]。
代码:
class Solution { public: ? ? int numSubarrayProductLessThanK(vector<int>& nums, int k) { ? ? ? ? if (k <= 1) return 0; ? ? ? ? int cur = 1; ? ? ? ? int l = 0, r = 0; ? ? ? ? int ans = 0; ? ? ? ? while (r < nums.size()) { ? ? ? ? ? ? cur *= nums[r]; ? ? ? ? ? ? while (cur >= k) { ? ? ? ? ? ? ? ? cur /= nums[l]; ? ? ? ? ? ? ? ? l++; ? ? ? ? ? ? } ? ? ? ? ? ?? ? ? ? ? ? ? ans += r - l + 1; ? ? ? ? ? ? r++; ? ? ? ? } ? ? ? ? return ans; ? ? } };
|