IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> stream流式操作 -> 正文阅读

[数据结构与算法]stream流式操作

/**
     * 创建流
     */
    public static void createStream() {
        // 方式一:使用集合创建流
        List<String> list = Arrays.asList("a","b","c");
        // 创建一个顺序流
        Stream<String> stream = list.stream();
        // 创建一个并行流,数据和顺序无关
        Stream<String> stringStream = list.parallelStream();

        // 方式二:使用数组创建流
        int[] array = {1,3,5,6,8};
        IntStream intStream = Arrays.stream(array);

        // 方式三:使用stream的静态方法创建流:of(),iterate(),generate()
        Stream<Integer> integerStream = Stream.of(1, 3, 5, 6, 8);

        // iterate创建stream  limit限制循环次数
        Stream<Integer> limit = Stream.iterate(0, (x) -> x + 3).limit(4);
        limit.forEach(System.out::println);

        // generate创建stream  limit限制循环次数
        Stream<Double> limit1 = Stream.generate(Math::random).limit(3);
        limit1.forEach(System.out::println);

        // parallel() 将顺序流转换成并行流
        List<Integer> intList = Arrays.asList(1,4,6,9,12,7);
        Optional<Integer> findFirst = intList.stream().parallel().filter(x->x>6).findFirst();
        System.out.println(findFirst.get());
    }

    /**
     * 循环遍历(foreach,find,match)
     */
    public static void streamEach(){

        List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);

        // 遍历输出符合条件的元素
        list.stream().filter(x -> x > 6).forEach(System.out::println);

        // 匹配第一个
        Optional<Integer> findFirst = list.stream().filter(x -> x > 10).findFirst();

        // 匹配任意(适用于并行流)
        Optional<Integer> findAny = list.parallelStream().filter(x -> x > 610).findAny();

        // 是否包含符合特定条件元素
        boolean anyMatch = list.stream().anyMatch(x -> x > 6);
        System.out.println("匹配第一个值:" + findFirst.isPresent());
        System.out.println("匹配任意一个值:" + findAny.isPresent());
        System.out.println("是否存在大于6的值:" + anyMatch);
    }

    public static void filter() {
        List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);

        Stream<Integer> stream = list.stream();
        list = stream.filter(x -> x > 7).collect(Collectors.toList());

        //list.forEach(System.out::println);

        // 筛选员工中工资高于8000的人,并形成新的集合
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        List<String> collect = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName).collect(Collectors.toList());

        System.out.println("高于8000的员工姓名:" + collect);
    }

    /**
     * 聚合:mix/min/count
     */
    public static void collection() {
        List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");

        // 获取最长字符串
        Optional<String> max = list.stream().max(Comparator.comparing(String::length));
        System.out.println("最长字符串:" + max.get());

        List<Integer> integerList = Arrays.asList(7, 6, 9, 4, 11, 6);

        // 自然排序
        Optional<Integer> max1 = integerList.stream().max(Integer::compareTo);

        Optional<Integer> max2 = integerList.stream().max(new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o1.compareTo(o2);
            }
        });

        System.out.println("自然排序的最大值:" + max1.get());
        System.out.println("自定义排序的最大值:" + max2.get());

        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        Optional<Person> max3 = personList.stream().max(Comparator.comparing(Person::getSalary));
        System.out.println("员工工资最大值:" + max3.get().getSalary());


        List<Integer> countList = Arrays.asList(7, 6, 4, 8, 2, 11, 9);

        long count = countList.stream().filter(x -> x > 6).count();
        System.out.println("countLit中大于6的元素的个数:" + count);
    }

    /**
     * 映射:map/flatMap
     */
    public static void mapping() {
        // 英文字符串数组的元素全部改为大写。整数数组每个元素+3
        String[] strArr = {"abcd", "bcdd", "defde", "fTr"};
        // 将数组元素小写转大写,并且转成集合
        List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

        // 每个元素+3
        List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
        List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

        System.out.println("每个元素大写:" + strList);
        System.out.println("每个元素+3:" + intListNew);

        // 员工薪资增加10000
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        // 不改变原来员工集合的方式
        List<Person> personListNew = personList.stream().map(person -> {
            Person personNew = new Person(person.getName(),0,0,null,null);
            personNew.setSalary(person.getSalary() + 10000);
            return personNew;
        }).collect(Collectors.toList());

        System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
        System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());

        // 改变原来员工集合的方式
        List<Person> personListNew2 = personList.stream().map(person -> {
            person.setSalary(person.getSalary() + 10000);
            return person;
        }).collect(Collectors.toList());
        System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
        System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew2.get(0).getSalary());

        /******************************** flatMap *******************************************/
        /**
         * 将两个字符数组合并成一个新的字符数组
         */
        // 两个字符数组
        List<String> twoStrList = Arrays.asList("m,k,l,a","1,3,5,7");

        List<String> listNew = twoStrList.stream().flatMap(s -> {
            // 将每个元素转换成一个stream
            String[] split = s.split(",");
            Stream<String> s2 = Arrays.stream(split);
            return s2;
        }).collect(Collectors.toList());

        System.out.println("处理前的集合:" + twoStrList);
        System.out.println("处理后的集合:" + listNew);
    }

    /**
     * 规约:是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
     *
     */
    public static void streamReduce() {

        // 求Integer集合的元素之和、乘积和最大值
        List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);

        // 求和方式1
        Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
        // 求和方式2
        Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
        // 求和方式3
        Integer sum3 = list.stream().reduce(0, Integer::sum);

        // 求乘积
        Optional<Integer> product = list.stream().reduce((x, y) -> x * y);

        // 求最大值方式1
        Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);

        // 求最大值方式二
        Integer max2 = list.stream().reduce(0, Integer::max);

        System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
        System.out.println("list求积:" + product.get());
        System.out.println("list求和:" + max.get() + "," + max2);

        /*
            求所有员工的工资之和和最高工资。
         */
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        // 求工资之和方式1
        Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
        // 求工资之和方式2
        Integer sumSalary2 = personList.stream().reduce(0, (s, p) -> s += p.getSalary(), (s1, s2) -> s1 + s2);
        // 求工资之和方式3
        Integer sumSalary3 = personList.stream().reduce(0, (s, p) -> s += p.getSalary(), Integer::sum);

        // 求最高工资方法1
        Integer maxSalary = personList.stream().reduce(0, (m, p) -> m > p.getSalary() ? m : p.getSalary(), Integer::max);
        // 求最高工资方法2
        Integer maxSalary1 = personList.stream().reduce(0, (m, p) -> m > p.getSalary() ? m : p.getSalary(), (m1, m2) -> m1 > m2 ? m1 : m2);
        System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
        System.out.println("最高工资:" + maxSalary + "," + maxSalary1);
    }

    /**
     * 归集:toList/toSet/toMap
     * 计数:count
     * 平均值:averagingInt、averagingLong、averagingDouble
     * 最值:maxBy、minBy
     * 求和:summingInt、summingLong、summingDouble
     * 统计以上所有:summarizingInt、summarizingLong、summarizingDouble
     */
    public static void streamCollection() {

        /**
         * 归集:toList/toSet/toMap
         */
        List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
        List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
        Set<Integer> setNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));

        // 转换成Map<String,Person>
        Map<String, Person> mapNew = personList.stream().filter(p -> p.getSalary() > 8000).collect(Collectors.toMap(Person::getName, p -> p));
        System.out.println("toList:" + listNew);
        System.out.println("toSet:" + setNew);
        System.out.println("toMap:" + mapNew);

        /*
            统计员工人数、平均工资、工资总额、最高工资。
         */
        List<Person> coustomerList = new ArrayList<Person>();
        coustomerList.add(new Person("Tom", 8900, 23, "male", "New York"));
        coustomerList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        coustomerList.add(new Person("Lily", 7800, 21, "female", "Washington"));

        // 求总数
        Long countCoustomer = coustomerList.stream().collect(Collectors.counting());
        // 求平均工资
        Double averageSalary = coustomerList.stream().collect(Collectors.averagingDouble(Person::getSalary));
        // 求最高工资
        Optional<Integer> maxSalary = coustomerList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
        // 求工资之和
        Integer sumSalary = coustomerList.stream().collect(Collectors.summingInt(Person::getSalary));
        // 一次性统计所有信息
        DoubleSummaryStatistics totalSalary = coustomerList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

        System.out.println("员工总数:" + countCoustomer);
        System.out.println("员工平均工资:" + averageSalary);
        System.out.println("员工工资总和:" + sumSalary);
        System.out.println("员工工资所有统计:" + totalSalary);


        /**
         * 分组(partitioningBy/groupingBy)
         * 将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组
         */
        List<Person> groupList = new ArrayList<Person>();
        groupList.add(new Person("Tom", 8900, 23,"male", "New York"));
        groupList.add(new Person("Jack", 7000, 22,"male", "Washington"));
        groupList.add(new Person("Lily", 7800, 30,"female", "Washington"));
        groupList.add(new Person("Anni", 8200, 28,"female", "New York"));
        groupList.add(new Person("Owen", 9500, 25,"male", "New York"));
        groupList.add(new Person("Alisa", 7900,24,"female", "New York"));

        // 将员工薪资是否高于8000分组
        Map<Boolean, List<Person>> salaryMap = groupList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
        // 将员工按性别分组
        Map<String, List<Person>> sexMap = groupList.stream().collect(Collectors.groupingBy(Person::getSex));
        // 将员工按性别分组,再按地区分组
        Map<String, Map<String, List<Person>>> sexAreaMap = groupList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));

        System.out.println("员工按薪资是否大于8000分组情况:" + salaryMap);
        System.out.println("员工按性别分组情况:" + sexMap);
        System.out.println("员工按性别、地区:" + sexAreaMap);

        /**
         * 接合:joining
         * joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串
         */
        List<Person> joinList = new ArrayList<Person>();
        joinList.add(new Person("Tom", 8900, 23, "male", "New York"));
        joinList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        String collect = joinList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
        joinList.add(new Person("Lily", 7800, 21, "female", "Washington"));

        // 拼接员工姓名
        String names = joinList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
        System.out.println("所有员工的姓名:" + names);
        List<String> charList = Arrays.asList("A", "B", "C");
        String charStr = charList.stream().collect(Collectors.joining("-"));
        System.out.println("拼接后的字符串:" + charStr);

        /**
         * 规约:reducing
         * 增加了对自定义规约的支持
         */
        List<Person> reducingList = new ArrayList<Person>();
        reducingList.add(new Person("Tom", 8900, 23, "male", "New York"));
        reducingList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        reducingList.add(new Person("Lily", 7800, 21, "female", "Washington"));

        // 每个员工减去起征点后的薪资之和
        Integer reducingSum = reducingList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
        System.out.println("员工扣税薪资总和:" + reducingSum);
        // stream的reduce
        Optional<Integer> reduceSum = reducingList.stream().map(Person::getSalary).reduce(Integer::sum);
        System.out.println("员工薪资总和:" + reduceSum.get());

        /**
         * 排序:sorted,中间操作
         * sorted():自然排序,流中元素需实现Comparable接口
         * sorted(Comparator com):Comparator排序器自定义排序
         */
        List<Person> sortedList = new ArrayList<Person>();

        sortedList.add(new Person("Sherry", 9000, 24, "female", "New York"));
        sortedList.add(new Person("Tom", 8900, 22, "male", "Washington"));
        sortedList.add(new Person("Jack", 9000, 25, "male", "Washington"));
        sortedList.add(new Person("Lily", 8800, 26, "male", "New York"));
        sortedList.add(new Person("Alisa", 9000, 26, "female", "New York"));

        // 员工薪资升序排序(自然排序)
        List<String> sortList = sortedList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName).collect(Collectors.toList());
        // 员工工资倒序排序
        List<String> reversedList = sortedList.stream().sorted(Comparator.comparing(Person::getSalary).reversed()).map(Person::getName).collect(Collectors.toList());
        // 先按工资再按年龄升序排列
        List<String> salaryAgeSortList = sortedList.stream().sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName).collect(Collectors.toList());
        // 先按工资再按年龄自定义排序(降序)
        List<String> salaryAgeSortReverseList = sortedList.stream().sorted((p1, p2) -> {
            if (p1.getSalary() == p2.getSalary()) {
                return p2.getAge() - p1.getAge();
            } else {
                return p2.getSalary() - p1.getSalary();
            }
        }).map(Person::getName).collect(Collectors.toList());

        System.out.println("按工资升序排序:" + sortList);
        System.out.println("按工资降序排序:" + reversedList);
        System.out.println("先按工资再按年龄升序排序:" + salaryAgeSortList);
        System.out.println("先按工资再按年龄自定义降序排序:" + salaryAgeSortReverseList);

        /**
         * 提取/组合
         * 流也可以进行合并、去重、限制、跳过等操作。
         */
        String[] arr1 = { "a", "b", "c", "d" };
        String[] arr2 = { "d", "e", "f", "g" };

        Stream<String> stream1 = Stream.of(arr1);
        Stream<String> stream2 = Stream.of(arr2);
        // concat:合并两个流 distinct; 去重
        List<String> streamNewList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
        // limit:限制从流中获得前n个数据
        List<Integer> limitList  = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
        // skip:跳过前n个数据
        List<Integer> skipList = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());
        System.out.println("流合并:" + streamNewList);
        System.out.println("limit:" + limitList);
        System.out.println("skip:" + skipList);
    }

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-05-07 11:22:23  更:2022-05-07 11:24:35 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 16:26:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码