IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> java数据结构-栈详解 -> 正文阅读

[数据结构与算法]java数据结构-栈详解

1.数据结构-栈

1.1栈的介绍

  1. 栈的英文为(stack)
  2. 栈是一个先入后出(FILO-First In Last Out)的有序列表。
  3. 栈(stack)是限制线性表中元素的插入和删除只能在线性表的同一端进行的一种特殊线性表。允许插入和删除的一端,为变化的一端,称为栈顶(Top),另一端为固定的一端,称为栈底(Bottom)。
  4. 根据栈的定义可知,最先放入栈中元素在栈底,最后放入的元素在栈顶,而删除元素刚好相反,最后放入的元素最先删除,最先放入的元素最后删除。
  5. 出栈(pop)和入栈(push)的概念(如图所示)

在这里插入图片描述

在这里插入图片描述

1.2 栈的应用场景

  1. 子程序的调用:在跳往子程序前,会先将下个指令的地址存到堆栈中,直到子程序执行完后再将地址取出,以回到原来的程序中。
  2. 处理递归调用:和子程序的调用类似,只是除了储存下一个指令的地址外,也将参数、区域变量等数据存入堆栈中。
  3. 表达式的转换[中缀表达式转后缀表达式]与求值(实际解决)。
  4. 二叉树的遍历。
  5. 图形的深度优先(depth一first)搜索法。

1.3 用数组模拟栈

实现栈的思路分析

  1. 使用数组来模拟栈。
  2. 定义一个 top 来表示栈顶,初始化 为 -1。
  3. 入栈的操作,当有数据加入到栈时, top++; stack[top] = data;
  4. 出栈的操作, int value = stack[top];top–, return value

在这里插入图片描述

下面定义一个栈并实现入栈,出栈,判断是否栈空,栈满以及对栈进行遍历的功能。

代码实现:

public class ArrayStackDemo {

	public static void main(String[] args) {
		//测试一下ArrayStack 是否正确
		//先创建一个ArrayStack对象->表示栈
		ArrayStack stack = new ArrayStack(4);
		String key = "";
		boolean loop = true; //控制是否退出菜单
		Scanner scanner = new Scanner(System.in);
		
		while(loop) {
			System.out.println("show: 表示显示栈");
			System.out.println("exit: 退出程序");
			System.out.println("push: 表示添加数据到栈(入栈)");
			System.out.println("pop: 表示从栈取出数据(出栈)");
			System.out.println("请输入你的选择");
			key = scanner.next();
			switch (key) {
			case "show":
				stack.list();
				break;
			case "push":
				System.out.println("请输入一个数");
				int value = scanner.nextInt();
				stack.push(value);
				break;
			case "pop":
				try {
					int res = stack.pop();
					System.out.printf("出栈的数据是 %d\n", res);
				} catch (Exception e) {
					// TODO: handle exception
					System.out.println(e.getMessage());
				}
				break;
			case "exit":
				scanner.close();
				loop = false;
				break;
			default:
				break;
			}
		}
		
		System.out.println("程序退出~~~");
	}

}

//定义一个 ArrayStack 表示栈
class ArrayStack {
	private int maxSize; // 栈的大小
	private int[] stack; // 数组,数组模拟栈,数据就放在该数组
	private int top = -1;// top表示栈顶,初始化为-1
	
	//构造器
	public ArrayStack(int maxSize) {
		this.maxSize = maxSize;
		stack = new int[this.maxSize];
	}
	
	//栈满
	public boolean isFull() {
		return top == maxSize - 1;
	}
	//栈空
	public boolean isEmpty() {
		return top == -1;
	}
	//入栈-push
	public void push(int value) {
		//先判断栈是否满
		if(isFull()) {
			System.out.println("栈满");
			return;
		}
		top++;
		stack[top] = value;
	}
	//出栈-pop, 将栈顶的数据返回
	public int pop() {
		//先判断栈是否空
		if(isEmpty()) {
			//抛出异常
			throw new RuntimeException("栈空,没有数据~");
		}
		int value = stack[top];
		top--;
		return value;
	}
	//显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
	public void list() {
		if(isEmpty()) {
			System.out.println("栈空,没有数据~~");
			return;
		}
		//需要从栈顶开始显示数据
		for(int i = top; i >= 0 ; i--) {
			System.out.printf("stack[%d]=%d\n", i, stack[i]);
		}
	}
	
}

1.4栈实现简单四则综合计算器

使用栈完成表达式的计算的思路:(中缀表达式)

1.通过一个 index 值(索引),来遍历我们的表达式

2.如果我们发现是一个数字, 就直接入数栈

3.如果发现扫描到是一个符号, 就分如下情况

3.1 如果发现当前的符号栈为 空,就直接入栈
3.2 如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于栈中的操作符, 就需要从数栈中pop出两个数,在从符号栈中pop出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈, 如果当前的操作符的优先级大于栈中的操作符, 就直接入符号栈.

4.当表达式扫描完毕,就顺序的从 数栈和符号栈中pop出相应的数和符号,并运行.

5.最后在数栈只有一个数字,就是表达式的结果

在这里插入图片描述

代码实现:

public class Calculator {

	public static void main(String[] args) {
		//根据前面思路,完成表达式的运算
		String expression = "7*2*2-5+1-5+3-4"; // 15//如何处理多位数的问题?
		//创建两个栈,数栈,一个符号栈
		ArrayStack2 numStack = new ArrayStack2(10);
		ArrayStack2 operStack = new ArrayStack2(10);
		//定义需要的相关变量
		int index = 0;//用于扫描
		int num1 = 0; 
		int num2 = 0;
		int oper = 0;
		int res = 0;
		char ch = ' '; //将每次扫描得到char保存到ch
		String keepNum = ""; //用于拼接 多位数
		//开始while循环的扫描expression
		while(true) {
			//依次得到expression 的每一个字符
			ch = expression.substring(index, index+1).charAt(0);
			//判断ch是什么,然后做相应的处理
			if(operStack.isOper(ch)) {//如果是运算符
				//判断当前的符号栈是否为空
				if(!operStack.isEmpty()) {
					//如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于栈中的操作符,就需要从数栈中pop出两个数,
					//在从符号栈中pop出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈
					if(operStack.priority(ch) <= operStack.priority(operStack.peek())) {
						num1 = numStack.pop();
						num2 = numStack.pop();
						oper = operStack.pop();
						res = numStack.cal(num1, num2, oper);
						//把运算的结果如数栈
						numStack.push(res);
						//然后将当前的操作符入符号栈
						operStack.push(ch);
					} else {
						//如果当前的操作符的优先级大于栈中的操作符, 就直接入符号栈.
						operStack.push(ch);
					}
				}else {
					//如果为空直接入符号栈..
					operStack.push(ch); // 1 + 3
				}
			} else { //如果是数,则直接入数栈
				
				//numStack.push(ch - 48); //? "1+3" '1' => 1
				//分析思路
				//1. 当处理多位数时,不能发现是一个数就立即入栈,因为他可能是多位数
				//2. 在处理数,需要向expression的表达式的index 后再看一位,如果是数就进行扫描,如果是符号才入栈
				//3. 因此我们需要定义一个变量 字符串,用于拼接
				
				//处理多位数
				keepNum += ch;
				
				//如果ch已经是expression的最后一位,就直接入栈
				if (index == expression.length() - 1) {
					numStack.push(Integer.parseInt(keepNum));
				}else{
				
					//判断下一个字符是不是数字,如果是数字,就继续扫描,如果是运算符,则入栈
					//注意是看后一位,不是index++
					if (operStack.isOper(expression.substring(index+1,index+2).charAt(0))) {
						//如果后一位是运算符,则入栈 keepNum = "1" 或者 "123"
						numStack.push(Integer.parseInt(keepNum));
						//重要的!!!!!!, keepNum清空
						keepNum = "";
						
					}
				}
			}
			//让index + 1, 并判断是否扫描到expression最后.
			index++;
			if (index >= expression.length()) {
				break;
			}
		}
		
		//当表达式扫描完毕,就顺序的从 数栈和符号栈中pop出相应的数和符号,并运行.
		while(true) {
			//如果符号栈为空,则计算到最后的结果, 数栈中只有一个数字【结果】
			if(operStack.isEmpty()) {
				break;
			}
			num1 = numStack.pop();
			num2 = numStack.pop();
			oper = operStack.pop();
			res = numStack.cal(num1, num2, oper);
			numStack.push(res);//入栈
		}
		//将数栈的最后数,pop出,就是结果
		int res2 = numStack.pop();
		System.out.printf("表达式 %s = %d", expression, res2);
	}

}

//先创建一个栈,直接使用前面创建好
//定义一个 ArrayStack2 表示栈, 需要扩展功能
class ArrayStack2 {
	private int maxSize; // 栈的大小
	private int[] stack; // 数组,数组模拟栈,数据就放在该数组
	private int top = -1;// top表示栈顶,初始化为-1
	
	//构造器
	public ArrayStack2(int maxSize) {
		this.maxSize = maxSize;
		stack = new int[this.maxSize];
	}
	
	//增加一个方法,可以返回当前栈顶的值, 但是不是真正的pop
	public int peek() {
		return stack[top];
	}
	
	//栈满
	public boolean isFull() {
		return top == maxSize - 1;
	}
	//栈空
	public boolean isEmpty() {
		return top == -1;
	}
	//入栈-push
	public void push(int value) {
		//先判断栈是否满
		if(isFull()) {
			System.out.println("栈满");
			return;
		}
		top++;
		stack[top] = value;
	}
	//出栈-pop, 将栈顶的数据返回
	public int pop() {
		//先判断栈是否空
		if(isEmpty()) {
			//抛出异常
			throw new RuntimeException("栈空,没有数据~");
		}
		int value = stack[top];
		top--;
		return value;
	}
	//显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
	public void list() {
		if(isEmpty()) {
			System.out.println("栈空,没有数据~~");
			return;
		}
		//需要从栈顶开始显示数据
		for(int i = top; i >= 0 ; i--) {
			System.out.printf("stack[%d]=%d\n", i, stack[i]);
		}
	}
	//返回运算符的优先级,优先级是程序员来确定, 优先级使用数字表示
	//数字越大,则优先级就越高.
	public int priority(int oper) {
		if(oper == '*' || oper == '/'){
			return 1;
		} else if (oper == '+' || oper == '-') {
			return 0;
		} else {
			return -1; // 假定目前的表达式只有 +, - , * , /
		}
	}
	//判断是不是一个运算符
	public boolean isOper(char val) {
		return val == '+' || val == '-' || val == '*' || val == '/';
	}
	//计算方法
	public int cal(int num1, int num2, int oper) {
		int res = 0; // res 用于存放计算的结果
		switch (oper) {
		case '+':
			res = num1 + num2;
			break;
		case '-':
			res = num2 - num1;// 注意顺序
			break;
		case '*':
			res = num1 * num2;
			break;
		case '/':
			res = num2 / num1;
			break;
		default:
			break;
		}
		return res;
	}
	
}

1.5前缀,中缀,后缀表达式

1.5.1前缀表达式介绍

前缀表达式又称波兰式,前缀表达式的运算符位于操作数之前
举例说明: (3+4)×5-6 对应的前缀表达式就是 - × + 3 4 5 6

1.5.1.1前缀表达式的计算机求值过程

从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素和次顶元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果。

1.5.1.2 前缀表达式的计算过程

例如: (3+4)×5-6 对应的前缀表达式就是 - × + 3 4 5 6 , 针对前缀表达式求值步骤如下:

  1. 从右至左扫描,将6、5、4、3压入堆栈
  2. 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素),计算出3+4的值,得7,再将7入栈
  3. 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈
  4. 最后是-运算符,计算出35-6(先弹出的数—后弹出的数)的值,即29,由此得出最终结果

在这里插入图片描述

1.5.2 中缀表达式介绍

中缀表达式就是常见的运算表达式,如(3+4)×5-6
中缀表达式的求值是我们人最熟悉的,但是对计算机来说却不好操作(前面我们讲的案例就能看的这个问题),因此,在计算结果时,往往会将中缀表达式转成其它表达式来操作(一般转成后缀表达式.)

关于用中缀表达式实现简单四则运算计算器情况见上文

1.5.3后缀表达式介绍

后缀表达式又称逆波兰表达式,与前缀表达式相似,只是运算符位于操作数之后
举例说明: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 –

在这里插入图片描述

1.5.3.1后缀表达式的计算机求值过程

从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 和 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。

1.5.3.2后缀表达式的计算过程

例如: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 - , 针对后缀表达式求值步骤如下:

  1. 从左至右扫描,将3和4压入堆栈;
  2. 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
  3. 将5入栈;
  4. 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
  5. 将6入栈;
  6. 最后是-运算符,计算出35-6(后弹出的数—先弹出的数)的值,即29,由此得出最终结果

在这里插入图片描述

1.5.4中缀表达式转后缀表达式

思路分析:

1、初始化两个栈:运算符栈s1和储存中间结果的栈s2;
2、从左至右扫描中缀表达式;
3、遇到操作数时,将其压s2;
4、遇到运算符时,比较其与s1栈顶运算符的优先级:
4.1如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
4.2否则,若优先级比栈顶运算符的高,也将运算符压入s1;
4.3否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较;
5、遇到括号时: (1) 如果是左括号“(”,则直接压入s1 (2) 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
6、重复步骤2至5,直到表达式的最右边
7、将s1中剩余的运算符依次弹出并压入s2
8、依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式

举例说明:

将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下

结果为:“1 2 3 + 4 × + 5 –”

在这里插入图片描述

1.5.4.1中缀转后缀实现逆波兰计算器

代码如下:

public class PolandNotation {

	public static void main(String[] args) {
		
		
		//完成将一个中缀表达式转成后缀表达式的功能
		//说明
		//1. 1+((2+3)×4)-5 => 转成  1 2 3 + 4 × + 5 –
		//2. 因为直接对str 进行操作,不方便,因此 先将  "1+((2+3)×4)-5" =》 中缀的表达式对应的List
		//   即 "1+((2+3)×4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
		//3. 将得到的中缀表达式对应的List => 后缀表达式对应的List
		//   即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
		
		String expression = "1+((2+3)*4)-5";//注意表达式 
		List<String> infixExpressionList = toInfixExpressionList(expression);
		System.out.println("中缀表达式对应的List=" + infixExpressionList); // ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
		List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList);
		System.out.println("后缀表达式对应的List" + suffixExpreesionList); //ArrayList [1,2,3,+,4,*,+,5,–] 
		
		System.out.printf("expression=%d", calculate(suffixExpreesionList));
		
		
		
		/*
		
		//先定义给逆波兰表达式
		//(30+4)×5-6  => 30 4 + 5 × 6 - => 164
		// 4 * 5 - 8 + 60 + 8 / 2 => 4 5 * 8 - 60 + 8 2 / + 
		//测试 
		//说明为了方便,逆波兰表达式 的数字和符号使用空格隔开
		//String suffixExpression = "30 4 + 5 * 6 -";
		String suffixExpression = "4 5 * 8 - 60 + 8 2 / +"; // 76
		//思路
		//1. 先将 "3 4 + 5 × 6 - " => 放到ArrayList中
		//2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈 完成计算
		
		List<String> list = getListString(suffixExpression);
		System.out.println("rpnList=" + list);
		int res = calculate(list);
		System.out.println("计算的结果是=" + res);
		
		*/
	}
	
	
	
	//即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
	//方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
	public static List<String> parseSuffixExpreesionList(List<String> ls) {
		//定义两个栈
		Stack<String> s1 = new Stack<String>(); // 符号栈
		//说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
		//因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
		//Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2
		List<String> s2 = new ArrayList<String>(); // 储存中间结果的Lists2
		
		//遍历ls
		for(String item: ls) {
			//如果是一个数,加入s2
			if(item.matches("\\d+")) {
				s2.add(item);
			} else if (item.equals("(")) {
				s1.push(item);
			} else if (item.equals(")")) {
				//如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
				while(!s1.peek().equals("(")) {
					s2.add(s1.pop());
				}
				s1.pop();//!!! 将 ( 弹出 s1栈, 消除小括号
			} else {
				//当item的优先级小于等于s1栈顶运算符, 将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较
				//问题:我们缺少一个比较优先级高低的方法
				while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item) ) {
					s2.add(s1.pop());
				}
				//还需要将item压入栈
				s1.push(item);
			}
		}
		
		//将s1中剩余的运算符依次弹出并加入s2
		while(s1.size() != 0) {
			s2.add(s1.pop());
		}

		return s2; //注意因为是存放到List, 因此按顺序输出就是对应的后缀表达式对应的List
		
	}
	
	//方法:将 中缀表达式转成对应的List
	//  s="1+((2+3)×4)-5";
	public static List<String> toInfixExpressionList(String s) {
		//定义一个List,存放中缀表达式 对应的内容
		List<String> ls = new ArrayList<String>();
		int i = 0; //这时是一个指针,用于遍历 中缀表达式字符串
		String str; // 对多位数的拼接
		char c; // 每遍历到一个字符,就放入到c
		do {
			//如果c是一个非数字,我需要加入到ls
			if((c=s.charAt(i)) < 48 ||  (c=s.charAt(i)) > 57) {
				ls.add("" + c);
				i++; //i需要后移
			} else { //如果是一个数,需要考虑多位数
				str = ""; //先将str 置成"" '0'[48]->'9'[57]
				while(i < s.length() && (c=s.charAt(i)) >= 48 && (c=s.charAt(i)) <= 57) {
					str += c;//拼接
					i++;
				}
				ls.add(str);
			}
		}while(i < s.length());
		return ls;//返回
	}
	
	//将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中
	public static List<String> getListString(String suffixExpression) {
		//将 suffixExpression 分割
		String[] split = suffixExpression.split(" ");
		List<String> list = new ArrayList<String>();
		for(String ele: split) {
			list.add(ele);
		}
		return list;
		
	}
	
	//完成对逆波兰表达式的运算
	/*
	 * 1)从左至右扫描,将3和4压入堆栈;
		2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
		3)将5入栈;
		4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
		5)将6入栈;
		6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
	 */
	
	public static int calculate(List<String> ls) {
		// 创建给栈, 只需要一个栈即可
		Stack<String> stack = new Stack<String>();
		// 遍历 ls
		for (String item : ls) {
			// 这里使用正则表达式来取出数
			if (item.matches("\\d+")) { // 匹配的是多位数
				// 入栈
				stack.push(item);
			} else {
				// pop出两个数,并运算, 再入栈
				int num2 = Integer.parseInt(stack.pop());
				int num1 = Integer.parseInt(stack.pop());
				int res = 0;
				if (item.equals("+")) {
					res = num1 + num2;
				} else if (item.equals("-")) {
					res = num1 - num2;
				} else if (item.equals("*")) {
					res = num1 * num2;
				} else if (item.equals("/")) {
					res = num1 / num2;
				} else {
					throw new RuntimeException("运算符有误");
				}
				//把res 入栈
				stack.push("" + res);
			}
			
		}
		//最后留在stack中的数据是运算结果
		return Integer.parseInt(stack.pop());
	}

}

//编写一个类 Operation 可以返回一个运算符 对应的优先级
class Operation {
	private static int ADD = 1;
	private static int SUB = 1;
	private static int MUL = 2;
	private static int DIV = 2;
	
	//写一个方法,返回对应的优先级数字
	public static int getValue(String operation) {
		int result = 0;
		switch (operation) {
		case "+":
			result = ADD;
			break;
		case "-":
			result = SUB;
			break;
		case "*":
			result = MUL;
			break;
		case "/":
			result = DIV;
			break;
//		default:
//			System.out.println("不存在该运算符" + operation);
//			break;
		}
		return result;
	}
	
}

1.6栈实现逆波兰计算器完整版

完整版的逆波兰计算器,功能包括
支持 + - * / ( )
多位数,支持小数,
兼容处理, 过滤任何空白字符,包括空格、制表符、换页符

逆波兰计算器完整版考虑的因素较多,下面给出完整版代码,其基本思路和前面一样,也是使用到:中缀表达式转后缀表达式

public class ReversePolishMultiCalc {

	 /**
     * 匹配 + - * / ( ) 运算符
     */
    static final String SYMBOL = "\\+|-|\\*|/|\\(|\\)";

    static final String LEFT = "(";
    static final String RIGHT = ")";
    static final String ADD = "+";
    static final String MINUS= "-";
    static final String TIMES = "*";
    static final String DIVISION = "/";

    /**
     * 加減 + -
     */
    static final int LEVEL_01 = 1;
    /**
     * 乘除 * /
     */
    static final int LEVEL_02 = 2;

    /**
     * 括号
     */
    static final int LEVEL_HIGH = Integer.MAX_VALUE;


    static Stack<String> stack = new Stack<>();
    static List<String> data = Collections.synchronizedList(new ArrayList<String>());

    /**
     * 去除所有空白符
     * @param s
     * @return
     */
    public static String replaceAllBlank(String s ){
        // \\s+ 匹配任何空白字符,包括空格、制表符、换页符等等, 等价于[ \f\n\r\t\v]
        return s.replaceAll("\\s+","");
    }

    /**
     * 判断是不是数字 int double long float
     * @param s
     * @return
     */
    public static boolean isNumber(String s){
        Pattern pattern = Pattern.compile("^[-\\+]?[.\\d]*$");
        return pattern.matcher(s).matches();
    }

    /**
     * 判断是不是运算符
     * @param s
     * @return
     */
    public static boolean isSymbol(String s){
        return s.matches(SYMBOL);
    }

    /**
     * 匹配运算等级
     * @param s
     * @return
     */
    public static int calcLevel(String s){
        if("+".equals(s) || "-".equals(s)){
            return LEVEL_01;
        } else if("*".equals(s) || "/".equals(s)){
            return LEVEL_02;
        }
        return LEVEL_HIGH;
    }

    /**
     * 匹配
     * @param s
     * @throws Exception
     */
    public static List<String> doMatch (String s) throws Exception{
        if(s == null || "".equals(s.trim())) throw new RuntimeException("data is empty");
        if(!isNumber(s.charAt(0)+"")) throw new RuntimeException("data illeagle,start not with a number");

        s = replaceAllBlank(s);

        String each;
        int start = 0;

        for (int i = 0; i < s.length(); i++) {
            if(isSymbol(s.charAt(i)+"")){
                each = s.charAt(i)+"";
                //栈为空,(操作符,或者 操作符优先级大于栈顶优先级 && 操作符优先级不是( )的优先级 及是 ) 不能直接入栈
                if(stack.isEmpty() || LEFT.equals(each)
                        || ((calcLevel(each) > calcLevel(stack.peek())) && calcLevel(each) < LEVEL_HIGH)){
                    stack.push(each);
                }else if( !stack.isEmpty() && calcLevel(each) <= calcLevel(stack.peek())){
                    //栈非空,操作符优先级小于等于栈顶优先级时出栈入列,直到栈为空,或者遇到了(,最后操作符入栈
                    while (!stack.isEmpty() && calcLevel(each) <= calcLevel(stack.peek()) ){
                        if(calcLevel(stack.peek()) == LEVEL_HIGH){
                            break;
                        }
                        data.add(stack.pop());
                    }
                    stack.push(each);
                }else if(RIGHT.equals(each)){
                    // ) 操作符,依次出栈入列直到空栈或者遇到了第一个)操作符,此时)出栈
                    while (!stack.isEmpty() && LEVEL_HIGH >= calcLevel(stack.peek())){
                        if(LEVEL_HIGH == calcLevel(stack.peek())){
                            stack.pop();
                            break;
                        }
                        data.add(stack.pop());
                    }
                }
                start = i ;    //前一个运算符的位置
            }else if( i == s.length()-1 || isSymbol(s.charAt(i+1)+"") ){
                each = start == 0 ? s.substring(start,i+1) : s.substring(start+1,i+1);
                if(isNumber(each)) {
                    data.add(each);
                    continue;
                }
                throw new RuntimeException("data not match number");
            }
        }
        //如果栈里还有元素,此时元素需要依次出栈入列,可以想象栈里剩下栈顶为/,栈底为+,应该依次出栈入列,可以直接翻转整个stack 添加到队列
        Collections.reverse(stack);
        data.addAll(new ArrayList<>(stack));

        //System.out.println(data);
        return data;
    }

    /**
     * 算出结果
     * @param list
     * @return
     */
    public static Double doCalc(List<String> list){
        Double d = 0d;
        if(list == null || list.isEmpty()){
            return null;
        }
        if (list.size() == 1){
            System.out.println(list);
            d = Double.valueOf(list.get(0));
            return d;
        }
        ArrayList<String> list1 = new ArrayList<>();
        for (int i = 0; i < list.size(); i++) {
            list1.add(list.get(i));
            if(isSymbol(list.get(i))){
                Double d1 = doTheMath(list.get(i - 2), list.get(i - 1), list.get(i));
                list1.remove(i);
                list1.remove(i-1);
                list1.set(i-2,d1+"");
                list1.addAll(list.subList(i+1,list.size()));
                break;
            }
        }
        doCalc(list1);
        return d;
    }

    /**
     * 运算
     * @param s1
     * @param s2
     * @param symbol
     * @return
     */
    public static Double doTheMath(String s1,String s2,String symbol){
        Double result ;
        switch (symbol){
            case ADD : result = Double.valueOf(s1) + Double.valueOf(s2); break;
            case MINUS : result = Double.valueOf(s1) - Double.valueOf(s2); break;
            case TIMES : result = Double.valueOf(s1) * Double.valueOf(s2); break;
            case DIVISION : result = Double.valueOf(s1) / Double.valueOf(s2); break;
            default : result = null;
        }
        return result;

    }

    public static void main(String[] args) {
        //String math = "9+(3-1)*3+10/2";
        String math = "12.8 + (2 - 3.55)*4+10/5.0";
        try {
            System.out.print("计算结果=");
            doCalc(doMatch(math));
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

}

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-05-07 11:22:23  更:2022-05-07 11:25:25 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 3:39:38-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码