IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 基于树结构的机器学习算法笔记整理(决策树,随机森林,GBDT) -> 正文阅读

[数据结构与算法]基于树结构的机器学习算法笔记整理(决策树,随机森林,GBDT)

《Python Machine Learning By Example》 Third Edition 第四章笔记

1 本章内容介绍

通过本章我们可以学习到:

  • 决策树算法原理
  • 剪枝
  • 树的集成学习:聚合技术与随机森林
  • GBDT及XGBoost

2 决策树原理

  • 第二章我们学习的贝叶斯算法能处理数值型特征和类别型特征,因为它是计算它们的似然,而忽略特征本身的值,第三章我们学习的SVM要求特征必须是数值型的,因为算法中需要计算边界距离。本章学习的决策树也是既能处理数值型特征,也能处理类别型特征,但是比起更接近于统计学的贝叶斯,树结构的算法更加直观,树递归的过程也符合人类的决策过程。
  • 我们需要自上而下构建决策树,主要包括三个部分:内部结点(训练集中基于某个特征选出的子集),决策边(某个特征的不同分支),叶子结点(最终类别),树结构如下图所示:
    图源:《Python Machine Learning By Example》
  • 构建决策树的过程其实就是递归地对训练样本进行分区的过程。如果没有分区的标准,则特征空间中一共有nm 种树结构(其中n为单个特征可能取值的个数,m为特征维度),因此需要制定分区策略。这个策略就是贪心,其实每一次分区都可以看作一次贪心,选择当前样本集合中最优的特征来进行分类,直到树高度达到上限或者子集已无法再划分。但是什么样的特征算是最优特征呢?
  • 根据确定最优特征的标准,可以把决策树算法分为三类:ID3(使用信息增益),C4.5(使用信息增益率),CART(使用基尼系数),下面介绍这三种决策树算法。
  • ID3:首先要能体现出选择特征前后的差异,我们先引入熵的概念,它是用来表示随机变量不确定性的度量(熵越大,随机变量的不确定性就越大),若某个随机变量的概率分布为P(X=xi)=pi, 其中i = 1,2,…,n,则该随机变量的熵定义为H(X)= - ∑ pi log pi,而信息增益就是确定某个特征X之后,对类Y的信息的不确定性减小的程度,用公式表示就是g(D, A) = H(D) - H(D|A),其中H(D|A) = ∑ pi H(Di),信息增益越大,代表该特征具有更强的分类能力,所以ID3相当于使用极大似然法来选择概率模型。
  • C4.5:大致与ID3相同,只是ID3有个缺点:它容易偏向于选择取值较多的特征,因为如果一个特征取值越多,每个子集就越有可能全部分类正确,那么每个子集下计算出的H就会为0,导致信息增益很大。所以C4.5将信息增益改为信息增益率,即gR(D, A) = g(D, A) / HA(D),其中HA(D) = - ∑ pi log pi。
  • CART:即分类回归树算法,既可以用于分类,也可以用于回归。它由两部分组成:生成与剪枝,剪枝我们留到下一部分介绍。
    1)对于回归树,包含对输入空间的一个划分及每个划分上的输出值。训练时,使用平方误差来表示预测误差,若基于平方误差最小化的准侧,可知单个分区上的输出最优值为该分区内所有实例对应真值的均值。在选择最优切分变量和切分点时,需要遍历所有输入变量,求解使得使用该切分变量后,左右子区域的平方误差和最小,并且左右分区需要求解使得该区域上均方误差最小的输出值c。
    2)对于分类树,使用基尼系数来选择最优特征。基尼系数定义为 Gini(p ) = 1 - ∑ p2k,k表示第k类。基尼系数越大,样本的不确定性也越大,因此这里要求解基尼系数最小化。
  • CART树是二叉树,而ID3和C4.5是多叉树。

3 决策树中的剪枝算法

  • 构建树的过程是考虑局部最优,而剪枝则是考虑全局最优。因为剪枝往往要通过极小化决策树整体的损失函数来实现。前面决策树的生成部分其实也有剪枝,即预剪枝,也就是发生在决策树真正生成之前。我们可以设置,比如某个类别下的子集个数已经低于最小划分所需的样本个数,那么就生成叶子结点;或者树的高度已达上限,则停止递归。这样的方法能在一定程度上防止树结构过于复杂,也就防止了过拟合。
  • 另一种剪枝发生在决策树生成之后,即后剪枝。损失函数可以定义为Cα(T) = C(T) + α|T|,其中C(T)为预测误差,|T|是树叶子结点的个数,即为模型复杂度。较大的α促使学习到较为简单的模型,较小的α促使学习到较复杂的模型。剪枝,其实就是带正则化的损失函数最小化。如果剪枝后的损失函数值小于等于剪枝前的值,则进行剪枝。(等于是因为同等损失函数下,根据奥卡姆剃刀原理,我们更愿意选择较为简单的模型)

4 树的集成学习

  • 如果将bagging用到决策树算法上,就是通过重置采样,平行且独立地训练出一批树模型,然后在预测时进行投票选举,从而减小模型的方差。然而,这样的训练方法会导致各个树之间的相关性比较强,预测效果没有太大的提升。
  • 为了迫使每棵树变得不相关,就引出了随机森林。树的聚合只是对训练样本随机采样,而随机森林不仅是样本随机,而且在搜索每个结点的最佳分割时,样本内的特征也只随机选取一部分来用于训练。这样就保证了更多的多样性和更好的性能。
  • 随机森林的参数中,有对于单棵树的最大深度和最小分割样本数,跟前面一样是用来防止过拟合的;有对于随机森林的树的个数(通常可以设置为100,200,500)和每次搜索使用的特征数(对于一个m维的数据集,通常可以将该参数设置为根号m)。

5 拓展

  • 与前面并行训练的随机森林不同,有人又提出了GBDT(Gradient Boosting Decision Tree),即梯度提升树,如下所示。这种算法的每一棵树都是建立在前一棵树的基础上,即后一棵树想要修正前一棵树的错误(后一棵树学习的目标是前一棵树与真实输出间的误差),最后再将所有的树的输出值加起来就是最终的输出值。
    图源:《Python Machine Learning By Example》
  • 这种前一个模型依赖于上一个模型的方法叫做Boosting。XGBoost是GBDT的优秀版本:训练模式上与GBDT相同,而XGBoost的损失函数包含了预测项和正则项,预测项里通常是计算一阶导数来判断梯度下降的方向,而XGBoost还计算了二阶导数,进一步考虑了梯度变化的趋势,拟合更快,正则项防止过拟合。XGBoost的优点就在于提高了训练速度,决策树的速度瓶颈就在于最优特征的选择上,XGBoost将所有特征进行排序,形成一个结构,之后重复利用,提高了效率。它的缺点是:它在高维稀疏数据集上和小规模数据集上表现不是很好。
  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-05-16 11:26:43  更:2022-05-16 11:27:09 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 1:50:39-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码