IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 支持向量机-SMO算法 -> 正文阅读

[数据结构与算法]支持向量机-SMO算法

支持向量机原理参考:
1.支持向量机(SVM)的分析及python实现(高赞,通俗易懂,sklearn各种实现)
2.SVM 支持向量机算法原理(详细总结)和python代码实现(进阶详细理论)

SMO算法参考:
序列最小优化算法SMO及代码实现

python实现:

import numpy as np
import random

class SimpleSMO(object):  
    def __init__(self,x,y,b,c,tolerance,max_iter):      
        self.x = x
        self.y = y
        self.b = b
        self.c = c
        self.max_iter = max_iter
        self.tolerance = tolerance
        self.alpha = np.zeros((self.x.shape[0],1))
               
    def g(self,x_i):
        #计算对输入x_i的预测值, 此处必须reshape(-1,1)
        #print((np.dot(self.x,x_i.T).reshape(-1,1))) 
        return np.sum(self.alpha * self.y.reshape(-1, 1) * (np.dot(self.x,x_i.T).reshape(-1,1))) + self.b

    def Error(self,x_i,y_i):
        #计算预测值与输入值的误差 
        #print(self.g(x_i) - y_i)
        return self.g(x_i) - y_i
    
    def SelectJ(self,i):
        #简化版SMO:随机选择第二个优化变量j,并使其不等于第一个i
        j = i
        while (j==i):
            j = int(random.uniform(0,self.x.shape[0]))
        return j
    
    def Kernal(self,m,n):
        #定义核函数,用于计算Kij,本例中Kij = x[i].*x[j]
        return self.x[m].dot(self.x[n].T)       
    
    def Optimization(self):
        iter = 0 
        #while循环用于判定变量是否继续更新,iter只有在alpha不再发生变化时才会更新
        while (iter < self.max_iter):
            #alphaPairsChanged用于建立alpha是否改变的标志
            alphaPairsChanged = 0
            #建立for循环,for循环作为外层循环,寻找一个变量
            for i in range(self.alpha.size):
                #获得基于当前alpha下的第i个样本的误差
                E_i = self.Error(self.x[i],self.y[i])  
                #print(E_i)              
                ##选择第一个变量的要求:alpha_i是否严重违反kkt条件
                if (y[i] * E_i < -self.tolerance and self.alpha[i] < self.c ) or (y[i] * E_i > self.tolerance and self.alpha[i] > 0 ):
                    #违反kkt条件成立,随机选择第二个优化变量aplha_j(简化版SMO算法)
                    j = self.SelectJ(i)
                    #获得基于当前alpha下的第j个样本的误差
                    E_j = self.Error(self.x[j],self.y[j])
                    #记录未更新前alpha_i,alpha_j的值(即alpha_old值)为计算new值作准备
                    alpha_i_old = self.alpha[i].copy()
                    alpha_j_old = self.alpha[j].copy()
                    #根据alpha_i_old,alpha_j_old的值获得alpha_j_new的取值范围
                    if (self.y[i] != self.y[j]):
                        L = max(0,alpha_j_old-alpha_i_old)
                        H = min(self.c,self.c + alpha_j_old - alpha_i_old)
                    else:
                        L = max(0,alpha_j_old + alpha_i_old - self.c)
                        H = min(self.c,alpha_j_old + alpha_i_old)
                    #print(L,H)
                    if L == H:
                        print("L=H")
                        continue
                    #计算eta
                    eta = 2 * self.Kernal(i,j)-self.Kernal(i,i)-self.Kernal(j,j)
                    if eta>= 0:
                        print("eta>=0")
                        continue
                    #根据alpha_j_old,eta,y_i,E_i,E_j更新alpha_j_new_unc未剪辑的更新值
                    alpha_j_new_unc = alpha_j_old - y[j]*(E_i-E_j)/eta
                    #获得剪辑后的更新值并保存
                    self.alpha[j] = np.clip(alpha_j_new_unc,L,H)
                    ##选择第二个变量的要求:alpha_j具有足够大的变化
                    if abs(self.alpha[j]-alpha_j_old) < 0.00001:
                        print("j not moving enough")
                        continue
                    #根据alpha_j_old 和 更新后的self.alpha[j] 更新 self.alpha[i]
                    self.alpha[i] += self.y[i]*self.y[j]*(alpha_j_old-self.alpha[j])
                    #更新常数项b_i_new
                    b_i_new = self.b - E_i -y[i]*self.Kernal(i,i)*(self.alpha[i]-alpha_i_old) - y[j]*self.Kernal(j,i)*(self.alpha[j]-alpha_j_old)
                    #更新常数项b_j_new
                    b_j_new = self.b - E_j -y[i]*self.Kernal(i,j)*(self.alpha[i]-alpha_i_old) - y[j]*self.Kernal(j,j)*(self.alpha[j]-alpha_j_old)
                    if (self.alpha[i]>0 and self.alpha[i]<self.c):
                        self.b = b_i_new
                    elif (self.alpha[j]>0 and self.alpha[j]<self.c):
                        self.b = b_j_new                    
                    else:
                        self.b = (b_i_new + b_j_new)/2
                    #若程序无中断,alpha必然发生改变,所以标志也要变化
                    alphaPairsChanged += 1
                    print("External loop: %d; Internal loop i :%d; alphaPairsChanged :%d" % (iter,i,alphaPairsChanged))
            #只有alpha不再改变时(此时意味着很有可能是最优解),迭代次数iter更新从而验证是否为最优解
            if (alphaPairsChanged == 0):
                iter += 1
            #alpha改变时,迭代次数iter置0
            else:
                iter = 0
            print("Iteration number : %d" % iter)    


if __name__ == '__main__':
    x = np.array([[4,2], [3,3], [8,-2], [2,-4], [8,1]])
    y = np.array([-1,-1,1,-1,1])
    smo = SimpleSMO(x,y,0,0.6,0.001,10)
    smo.Optimization()

C++实现:

#include <iostream>
#include <vector>
#include <ctime>
#include <algorithm>

class SimpleSMO
{
public:
	SimpleSMO(std::vector<std::vector<float>> x, std::vector<float> y, float b, float c, float tolerance, int max_iter)
	{
		m_x = x;
		m_y = y;
		m_b = b;
		m_c = c;
		m_tolerance = tolerance;
		m_max_iter = max_iter;
		m_alpha.resize(m_x.size());
	}

	float g(std::vector<float> x_i)
	{
		std::vector<float> tmp_vec(m_x.size(), 0);
		for (size_t i = 0; i < m_x.size(); i++)
		{
			for (size_t j = 0; j < m_x[0].size(); j++)
			{
				tmp_vec[i] += m_x[i][j] * x_i[j];
			}
		}

		float tmp_val = 0;
		for (size_t i = 0; i < tmp_vec.size(); i++)
		{
			tmp_val += tmp_vec[i] * m_y[i];
		}

		float sum = 0;
		for (size_t i = 0; i < m_alpha.size(); i++)
		{
			sum += tmp_val*m_alpha[i];
		}

		return sum + m_b;
	}

	float Error(std::vector<float> x_i, float y_i)
	{
		return g(x_i) - y_i;
	}

	int SelectJ(int i)
	{
		srand((unsigned)time(NULL));
		int j = i;
		while (j == i)
		{
			j = rand() % m_x.size();
		}
		return j;
	}

	float Kernal(int m, int n)
	{
		float ret = 0;
		for (size_t i = 0; i < m_x[0].size(); i++)
		{
			ret += m_x[m][i] * m_x[n][i];
		}
		return ret;
	}

	void Optimization()
	{
		int iter = 0;
		while (iter < m_max_iter)
		{
			int alphaPairsChanged = 0;
			for (size_t i = 0; i < m_alpha.size(); i++)
			{
				float E_i = Error(m_x[i], m_y[i]);
				//std::cout << E_i << std::endl;
				if ((m_y[i] * E_i < -m_tolerance && m_alpha[i] < m_c) || (m_y[i] * E_i > m_tolerance && m_alpha[i] > 0))
				{
					int j = SelectJ(i);
					//std::cout << i << " " << j << std::endl;
					float E_j = Error(m_x[j], m_y[j]);
					float alpha_i_old = m_alpha[i];
					float alpha_j_old = m_alpha[j];

					float L, H;
					if (m_y[i] != m_y[j])
					{
						L = std::max(0.0f, alpha_j_old - alpha_i_old);
						H = std::min(m_c, m_c + alpha_j_old - alpha_i_old);
					}
					else {
						L = std::max(0.0f, alpha_j_old + alpha_i_old - m_c);
						H = std::min(m_c, alpha_j_old + alpha_i_old);
					}
					//std::cout << L << " " << H << std::endl;

					if (L == H)
					{
						std::cout << "L=H" << std::endl;
						continue;
					}

					float eta = 2 * Kernal(i, j) - Kernal(i, i) - Kernal(j, j);
					if (eta >= 0)
					{
						std::cout << "eta>=0" << std::endl;
						continue;
					}

					float alpha_j_new_unc = alpha_j_old - m_y[j] * (E_i - E_j) / eta;
					if (alpha_j_new_unc < L)
						m_alpha[j] = L;
					else if (alpha_j_new_unc > H)
						m_alpha[j] = H;
					else
						m_alpha[j] = alpha_j_new_unc;

					if (fabs(m_alpha[j] - alpha_j_old) < 0.00001)
					{
						std::cout << "j not moving enough" << std::endl;
						continue;
					}

					m_alpha[i] += m_y[i] * m_y[j] * (alpha_j_old - m_alpha[j]);

					float b_i_new = m_b - E_i - m_y[i] * Kernal(i, i)*(m_alpha[i] - alpha_i_old) - m_y[j] * Kernal(j, i)*(m_alpha[j] - alpha_j_old);
					float b_j_new = m_b - E_j - m_y[i] * Kernal(i, j)*(m_alpha[i] - alpha_i_old) - m_y[j] * Kernal(j, j)*(m_alpha[j] - alpha_j_old);

					if (m_alpha[i] > 0 && m_alpha[i] < m_c)
						m_b = b_i_new;
					else if (m_alpha[j] > 0 && m_alpha[j] < m_c)
						m_b = b_j_new;
					else
						m_b = (b_i_new + b_j_new) / 2.0;

					alphaPairsChanged += 1;
					std::cout << "External loop: " << iter << "; Internal loop i :" << i << "; alphaPairsChanged:" << alphaPairsChanged << std::endl;
				}
			}

			if (alphaPairsChanged == 0)
				iter += 1;
			else
				iter = 0;
			std::cout << "Iteration number: " << iter << std::endl;
		}
	}

private:
	std::vector<std::vector<float>> m_x;
	std::vector<float> m_y;
	float m_b;
	float m_c;
	float m_tolerance;
	int m_max_iter;
	std::vector<float> m_alpha;
};

int main(int argc, char* argv[])
{
	std::vector<std::vector<float>> x = { { 4,2 },{ 3,3 },{ 8,-2 },{ 2,-4 }, { 8,1 } };
	std::vector<float> y = { -1, -1, 1, -1, 1 };

	SimpleSMO smo = SimpleSMO(x, y, 0, 0.6, 0.001, 10);
	//std::cout << smo.Error(x[0], y[0]) << std::endl;
	smo.Optimization();

	system("pause");
	return EXIT_SUCCESS;
}
  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-05-16 11:26:44  更:2022-05-16 11:27:55 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 1:11:29-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码