IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> C#,动态规划(DP)模拟退火(Simulated Annealing)算法与源代码 -> 正文阅读

[数据结构与算法]C#,动态规划(DP)模拟退火(Simulated Annealing)算法与源代码

*问题:**给定一个成本函数f:r^n–>r*,找到一个 n 元组,该元组最小化 f 的值。请注意,最小化函数值在算法上等同于最大化(因为我们可以将成本函数重新定义为 1-f)。 很多有微积分/分析背景的人可能都熟悉单变量函数的简单优化。例如,函数 f(x) = x^2 + 2x 可以通过将一阶导数设置为零来优化,从而获得产生最小值 f(-1) = -1 的解 x = -1 。这种技术适用于变量很少的简单函数。然而,通常情况下,研究人员对优化几个变量的函数感兴趣,在这种情况下,只能通过计算获得解。

一个困难的优化任务的极好例子是芯片平面规划问题。假设你在英特尔工作,你的任务是设计集成电路的布局。您有一组不同形状/大小的模块,以及可以放置模块的固定区域。你想要达到的目标有很多:最大化导线连接元件的能力,最小化净面积,最小化芯片成本,等等。考虑到这些,您创建了一个成本函数,取所有,比如说, 1000 个变量配置,并返回一个代表输入配置“成本”的实数值。我们称之为目标函数,因为目标是最小化它的值。 一个简单的算法是完全的空间搜索——我们搜索所有可能的配置,直到找到最小值。这对于变量很少的函数来说可能就足够了,但是我们想到的问题需要这样一个强力算法来玩 *O(n!)*。

由于这类问题和其他 NP 难问题的计算困难,许多优化试探法已经被开发出来,试图产生一个好的,尽管可能是次优的值。在我们的例子中,我们不一定需要找到一个严格的最优值——找到一个接近最优的值将满足我们的目标。一种广泛使用的技术是模拟退火,通过它我们引入了一定程度的随机性,有可能从一个更好的解转移到一个更差的解,试图逃离局部极小值并收敛到一个更接近全局最优的值。

模拟退火是基于冶金实践,通过这种实践,材料被加热到高温并冷却。在高温下,原子可能会不可预测地移动,通常会随着材料冷却成纯晶体而消除杂质。这是通过模拟退火优化算法复制的,能量状态对应于当前解。 在这个算法中,我们定义了一个初始温度和一个最低温度,初始温度通常设置为 1,最低温度的数量级为 10^-4.当前温度乘以某个分数α,然后降低,直到达到最低温度。对于每个不同的温度值,我们运行核心优化例程的次数是固定的。优化程序包括找到一个相邻解并以概率e^(f(c–f(n)】接受它,其中 c 是当前解而 n 是相邻解。通过对当前解施加微小的扰动来找到相邻解。这种随机性有助于避开优化启发式算法的常见陷阱——陷入局部极小值。通过潜在地接受一个比我们目前拥有的更差的最优解,并以与成本增加相反的概率接受它,算法更有可能收敛到全局最优。设计一个邻居函数是相当棘手的,必须在个案的基础上完成,但以下是在位置优化问题中寻找邻居的一些想法。

  • 在随机方向上将所有点移动 0 或 1 个单位
  • 随机移动输入元素
  • 交换输入序列中的随机元素
  • 置换输入序列
  • 将输入序列分成随机数量的段和置换段

一个警告是,我们需要提供一个初始解决方案,以便算法知道从哪里开始。这可以通过两种方式来实现:(1)使用关于问题的先验知识来输入良好的起点,以及(2)生成随机解。尽管生成随机解更糟糕,有时会抑制算法的成功,但对于我们对环境一无所知的问题,这是唯一的选择。

还有许多其他优化技术,尽管模拟退火是一种有用的随机优化启发式方法,适用于大型离散搜索空间,在这些空间中,随着时间的推移,最优性是优先的。下面,我包含了一个基于位置的模拟退火的基本框架(可能是模拟退火最适用的优化风格)。当然,成本函数、候选生成函数和邻居函数必须根据手头的具体问题来定义,尽管核心优化例程已经实现。

using System;
using System.Text;

namespace Legalsoft.Truffer.Algorithm
{
    /// <summary>
    /// 算法核心数据类
    /// 含:方差系数均方根误差,配置参数(数组)
    /// </summary>
    public class Anneal_Solution
    {
        /// <summary>
        /// 方差系数均方根误差
        /// Coefficient of Variance Root Mean Squared Error
        /// 默认初值0.0;不超过1.0;
        /// </summary>
        public double CVRMSE { get; set; } = 0.0;
        /// <summary>
        /// 配置参数(数组)
        /// 整型数组;无初值(null);
        /// </summary>
        public int[] Config { get; set; } = null;
        /// <summary>
        /// (无参)默认构造函数
        /// </summary>
        public Anneal_Solution()
        {
        }
        /// <summary>
        /// (有参)构造函数
        /// </summary>
        /// <param name="CVRMSE">方差系数均方根误差</param>
        /// <param name="configuration">配置参数(数组)</param>
        public Anneal_Solution(double CVRMSE, int[] configuration)
        {
            this.CVRMSE = CVRMSE;
            Config = configuration;
        }
    }

    /// <summary>
    /// 模拟退火算法
    /// </summary>
    public class Simulated_Annealing
    {
        private static Random rand { get; set; } = new Random((int)DateTime.Now.Ticks);

        public static string Solve(int M = 15, int N = 15, double T_Minium = 0.0001, double Alpha = 0.9, int Maxium_Iterations = 100)
        {
            string[,] sourceArray = new string[M, N];
            Anneal_Solution min = new Anneal_Solution(double.MaxValue, null);
            Anneal_Solution currentSol = Rand_Solution(M);

            double temperature = 1.0;
            while (temperature > T_Minium)
            {
                for (int i = 0; i < Maxium_Iterations; i++)
                {
                    if (currentSol.CVRMSE < min.CVRMSE)
                    {
                        min = currentSol;
                    }

                    Anneal_Solution newSol = Neighbor(currentSol);
                    double ap = Math.Pow(Math.E, (currentSol.CVRMSE - newSol.CVRMSE) / temperature);
                    if (ap > rand.NextDouble())
                    {
                        currentSol = newSol;
                    }
                }
                temperature *= Alpha;
            }
            #endregion

            for (int i = 0; i < sourceArray.GetLength(0); i++)
            {
                for (int j = 0; j < sourceArray.GetLength(1); j++)
                {
                    sourceArray[i, j] = "X";
                }
            }

            foreach (int k in min.Config)
            {
                int[] coord = Index_To_Points(M, N, k);
                sourceArray[coord[0], coord[1]] = "-";
            }

            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < sourceArray.GetLength(0); i++)
            {
                for (int j = 0; j < sourceArray.GetLength(1); j++)
                {
                    sb.Append(sourceArray[i, j] + ", ");
                }
                sb.AppendLine("<br>");
            }
            return sb.ToString();
        }

        public static Anneal_Solution Neighbor(Anneal_Solution currentSol)
        {
            return currentSol;
        }

        public static Anneal_Solution Rand_Solution(int n)
        {
            int[] a = new int[n];
            for (int i = 0; i < n; i++)
            {
                a[i] = i + 1;
            }
            return new Anneal_Solution(-1, a);
        }

        public static double Cost(int[] inputConfiguration)
        {
            return -1;
        }

        public static int[] Index_To_Points(int M, int N, int index)
        {
            int[] points = { index % M, index / M };
            return points;
        }
    }
}

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-05-18 17:54:13  更:2022-05-18 17:54:46 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 2:00:25-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码