目录???????
双链表的定义与接口函数
定义双链表
?接口函数
详解接口函数的实现
创建新节点(BuyLTNode)
初始化双链表(ListInit)
双向链表打印(ListPrint)
双链表查找(ListFind)
双链表销毁(ListDestory)
1、双链表pos位置之前插入(ListInsert)
2、双链表删除pos位置(ListEarse)
3、双向链表尾插(ListPushBack)
4、双向链表头插(ListPushFront)
5、双链表头删(ListPopFront)
6、双链表尾删(ListPopBack)
总结
完整代码
链表OJ练习巩固
前言:
为了更好地理解本节,建议先阅读: 数据结构 - c语言链表操作
实际中要实现的链表的结构非常多样,以下情况组合起来有多种链表结构:
- ?单向、双向
- ?带头、不带头
- ?循环、非循环
解读:?
带头:
存在一个哨兵位的节点,该节点不存储任何有效数据,属于无效节点,但通过这个无效节点当头节点让我们在某些方面使用会有一些优势。
双向:
指的是节点中不再只有一个指针,而是有两个指针,一个指向前一个节点,另一个指向后一个节点。
循环:
尾指针不再指向NULL,而是指向头节点。?
然而,现实中实用的只有两种:分别是无头单向非循环链表;带头双向循环链表。
- 无头单向非循环链表:结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等。另外这种结构在笔试面试中出现很多。
- 带头双向循环链表:结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外,这个结构虽然结构复杂,但是使用代码实现后会发现结构会带来很多优势。双向链表严格来说只需要快速的实现两个接口,insert 和 earse 头尾的插入和删除就可以搞定了!
双链表的定义与接口函数
定义双链表
typedef int LTDataType;
typedef struct ListNode
{
LTDataType data;
struct ListNode* next;
struct ListNode* prev;
}LTNode;
?接口函数
void ListPrint(LTNode* phead);
//void ListInit(LTNode** pphead);
LTNode* ListInit();
LTNode* BuyLTNode(LTDataType x);
void ListPushBack(LTNode* phead, LTDataType x);
void ListPopBack(LTNode* phead);
void ListPushFront(LTNode* phead, LTDataType x);
void ListPopFront(LTNode* phead);
LTNode* ListFind(LTNode* phead, LTDataType x);
// 在pos之前插入
void ListInsert(LTNode* pos, LTDataType x);
//void ListInsert(int i, LTDataType x);
// 删除pos位置的节点
void ListErase(LTNode* pos);
void ListDestory(LTNode* phead);
详解接口函数的实现
?创建新节点(BuyLTNode)
LTNode* BuyLTNode(LTDataType x)
{
LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
if (newnode == NULL)
{
printf("malloc fail\n");
exit(-1);
}
newnode->data = x;
newnode->next = NULL;
newnode->prev = NULL;
return newnode;
}
初始化双链表(ListInit)
LTNode* ListInit()
{
LTNode* phead = BuyLTNode(0);
phead->next = phead;
phead->prev = phead;
return phead;
}
这里我们使用?BuyLTNode 函数开辟一块空间作为 "哨兵位"?pHead?,最后将其进行一个初始化。最后再将?pHead?作为结果返回回去,外面就可以接收到了。这就是返回值的方法,当然这里也可以采用二级指针的方法来完成。
双向链表打印(ListPrint)
void ListPrint(LTNode* phead)
{
assert(phead);
LTNode* cur = phead->next;
while (cur != phead)
{
printf("%d ", cur->data);
cur = cur->next;
}
printf("\n\n");
}
双链表查找(ListFind)
LTNode* ListFind(LTNode* phead, LTDataType x)
{
assert(phead);
LTNode* cur = phead->next;
while (cur != phead)
{
if (cur->data == x)
{
return cur;
}
cur = cur->next;
}
return NULL;
}
双链表销毁(ListDestory)
void ListDestory(LTNode* phead)
{
assert(phead);
LTNode* cur = phead->next;
while (cur != phead)
{
LTNode* next = cur->next;
//ListErase(cur);
free(cur);
cur = next;
}
free(phead);
//phead = NULL;
}
1、双链表pos位置之前插入(ListInsert)
void ListInsert(LTNode* pos, LTDataType x)
{
assert(pos);
/*LTNode* newnode = BuyLTNode(x);
pos->prev->next = newnode;
newnode->prev = pos->prev;
pos->prev = newnode;
newnode->next = pos;*/
LTNode* newnode = BuyLTNode(x);
LTNode* posPrev = pos->prev;
newnode->next = pos;
pos->prev = newnode;
posPrev->next = newnode;
newnode->prev = posPrev;
}
非常简单,假设d2是新节点,就是让新节点的两条链接在d3上,然后把d1的两条链接新节点上
2、双链表删除pos位置(ListEarse)
void ListErase(LTNode* pos)
{
assert(pos);
LTNode* prev = pos->prev;
LTNode* next = pos->next;
free(pos);
pos = NULL;
prev->next = next;
next->prev = prev;
}
?假设要删除d2,那么只需要直接把d1的两条链接d3上即可
3、双向链表尾插(ListPushBack)
void ListPushBack(LTNode* phead, LTDataType x)
{
assert(phead);
LTNode* tail = phead->prev;
LTNode* newnode = BuyLTNode(x);
tail->next = newnode;
newnode->prev = tail;
newnode->next = phead;
phead->prev = newnode;
}
4、双向链表头插(ListPushFront)
void ListPushFront(LTNode* phead, LTDataType x)
{
assert(phead);
ListInsert(phead->next, x);
}
5、双链表头删(ListPopFront)
void ListPopFront(LTNode* phead)
{
assert(phead);
assert(phead->next != phead);
ListErase(phead->next);
}
6、双链表尾删(ListPopBack)
void ListPopBack(LTNode* phead)
{
assert(phead);
// 链表为空
assert(phead->next != phead);
LTNode* tail = phead->prev;
LTNode* tailPrev = tail->prev;
free(tail);
tail = NULL;
tailPrev->next = phead;
phead->prev = tailPrev;
}
总结:
用ListInsert和ListEarse的复用优化后:
void ListPushBack(LTNode* phead, LTDataType x)
{
assert(phead);
ListInsert(phead, x);
}
void ListPopBack(LTNode* phead)
{
assert(phead);
// 链表为空
assert(phead->next != phead);
ListErase(phead->prev);
}
void ListPopFront(LTNode* phead)
{
assert(phead);
assert(phead->next != phead);
ListErase(phead->next);
}
void ListPushFront(LTNode* phead, LTDataType x)
{
assert(phead);
ListInsert(phead->next, x);
}
所以,双向链表严格来说只需要快速地实现 insert 和 earse 这两个接口就可以搞定了。如果以后让你快速实现一个双向链表,你把 "pos位置之前插入" 和 "删除pos位置" 这两个接口写好,头尾的插入和删除直接复用就可以搞定了。
完整代码
List.h
#pragma once
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
typedef int LTDataType;
typedef struct ListNode
{
LTDataType data;
struct ListNode* next;
struct ListNode* prev;
}LTNode;
void ListPrint(LTNode* phead);
//void ListInit(LTNode** pphead);
LTNode* ListInit();
LTNode* BuyLTNode(LTDataType x);
void ListPushBack(LTNode* phead, LTDataType x);
void ListPopBack(LTNode* phead);
void ListPushFront(LTNode* phead, LTDataType x);
void ListPopFront(LTNode* phead);
LTNode* ListFind(LTNode* phead, LTDataType x);
// 在pos之前插入
void ListInsert(LTNode* pos, LTDataType x);
//void ListInsert(int i, LTDataType x);
// 删除pos位置的节点
void ListErase(LTNode* pos);
void ListDestory(LTNode* phead);
List.c
#include"List.h"
LTNode* BuyLTNode(LTDataType x)
{
LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
if (newnode == NULL)
{
printf("malloc fail\n");
exit(-1);
}
newnode->data = x;
newnode->next = NULL;
newnode->prev = NULL;
return newnode;
}
void ListPrint(LTNode* phead)
{
assert(phead);
LTNode* cur = phead->next;
while (cur != phead)
{
printf("%d ", cur->data);
cur = cur->next;
}
printf("\n\n");
}
//void ListInit(LTNode** pphead)
//{
// assert(pphead);
// *pphead = BuyLTNode(0);
// (*pphead)->next = *pphead;
// (*pphead)->prev = *pphead;
//}
LTNode* ListInit()
{
LTNode* phead = BuyLTNode(0);
phead->next = phead;
phead->prev = phead;
return phead;
}
void ListPushBack(LTNode* phead, LTDataType x)
{
assert(phead);
//LTNode* tail = phead->prev;
//LTNode* newnode = BuyLTNode(x);
//tail->next = newnode;
//newnode->prev = tail;
//newnode->next = phead;
//phead->prev = newnode;
ListInsert(phead, x);
}
void ListPopBack(LTNode* phead)
{
assert(phead);
// 链表为空
assert(phead->next != phead);
/* LTNode* tail = phead->prev;
LTNode* tailPrev = tail->prev;
free(tail);
tail = NULL;
tailPrev->next = phead;
phead->prev = tailPrev;*/
ListErase(phead->prev);
}
void ListPopFront(LTNode* phead)
{
assert(phead);
assert(phead->next != phead);
ListErase(phead->next);
}
void ListPushFront(LTNode* phead, LTDataType x)
{
assert(phead);
ListInsert(phead->next, x);
}
LTNode* ListFind(LTNode* phead, LTDataType x)
{
assert(phead);
LTNode* cur = phead->next;
while (cur != phead)
{
if (cur->data == x)
{
return cur;
}
cur = cur->next;
}
return NULL;
}
void ListInsert(LTNode* pos, LTDataType x)
{
assert(pos);
/*LTNode* newnode = BuyLTNode(x);
pos->prev->next = newnode;
newnode->prev = pos->prev;
pos->prev = newnode;
newnode->next = pos;*/
LTNode* newnode = BuyLTNode(x);
LTNode* posPrev = pos->prev;
newnode->next = pos;
pos->prev = newnode;
posPrev->next = newnode;
newnode->prev = posPrev;
}
// 驼峰法
// 函数和类型所有单词首字母大写
// 变量:第一个单词小写后续单词首字母大写
void ListErase(LTNode* pos)
{
assert(pos);
LTNode* prev = pos->prev;
LTNode* next = pos->next;
free(pos);
pos = NULL;
prev->next = next;
next->prev = prev;
}
void ListDestory(LTNode* phead)
{
assert(phead);
LTNode* cur = phead->next;
while (cur != phead)
{
LTNode* next = cur->next;
//ListErase(cur);
free(cur);
cur = next;
}
free(phead);
//phead = NULL;
}
链表OJ练习巩固
138. 复制带随机指针的链表 - 力扣(LeetCode)
链表知识点题库 - 力扣(LeetCode)
牛客网 - 找工作神器|笔试题库|面试经验|实习招聘内推,求职就业一站解决_牛客网 (nowcoder.com)
|