| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 数据结构与算法 -> 动态规划解0-1背包问题 -> 正文阅读 |
|
[数据结构与算法]动态规划解0-1背包问题 |
🚀 优质资源分享 🚀
动态规划解0-1背包问题动态规划解0-1背包问题是一个十分典型案例,我从网上查询好多相关资料,但是大部分都深奥难懂,并不适合初学算法的小白,其中涉及的递推关系式、填表,以及最后的二维表简化为一维表的优化过程,好多都是一笔带过,所以,今天就尽我所能,来叙述一下对于0-1背包问题使用动态规划来求解。 动态规划先说一说什么是动态规划。 从这张图我们可以看出,当我们对所求问题进行子问题划分时,会产生很对相同的子问题,这些子问题在计算机中我们已经求得结果一次,再另一个子问题中,我们如果再让计算机求解相同的子问题,显然有点不太地道。 通过上述所言,我们讲清楚了什么是动态规划。 进而,我们可以总结出,要想使用动态规划,我们的问题必不可少两个基本要素是:
当我们的问题具备这两个基本要素后,我们便可以考虑使用动态规划来求解问题。 0-1背包问题实现我们来了解一下什么是0-1背包问题。
那么我们就来解决一下这个不可分割的背包问题。 背包问题抽象化把背包问题抽象化,Vi表示第 i 个物品的价值,Wj表示第 i 个物品的体积(重量),设dp[i][j]为背包为j时前i个物品的总价值。 W0-W4是物品编号,M0-M8是背包的容量,表中绿色区域表示dp值,即该背包容量下,前n个物品可装入的最大价值。 通过打表,当我们打到M3,W2时,我们发现一个问题,就是在dp[2][3],我们有两种选择:即容量为3,我们可以选W2,也可以选择W1,因为dp为可装入物品的价值的最大值,这是我们需要比较W1与W2的价值,选择价值大的一个,如果价值W2>W1,则dp[2][3]=W2的价值,否则dp的值是W1的价值,在此时,我们可以看到W2>W1,所以我们填入W2的价值。 如此继续打表 我们可以看到,当我们的背包容量不足以装下新的物品时,实际上它的值是相同背包容量下,前n-1个物品的最大价值。即dp[i][j]=dp[i-1][j];
代码优化通过代码,我们实现了动态规划解决0-1背包问题。但是我们不难发现,这样通过一个二维表十分的浪费空间,我们可不可以优化代码呢。 我们来看递推公式,不难发现,实际上,
由此我们用动态规划将0-1背包问题讲了个大概。 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/27 2:14:36- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |