IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 【Paper】2020_Anomaly Detection and Identi?cation for Multiagent Systems Subjected to Physical Faults -> 正文阅读

[数据结构与算法]【Paper】2020_Anomaly Detection and Identi?cation for Multiagent Systems Subjected to Physical Faults

Y. Li, H. Fang and J. Chen, “Anomaly Detection and Identification for Multiagent Systems Subjected to Physical Faults and Cyberattacks,” in IEEE Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9724-9733, Nov. 2020, doi: 10.1109/TIE.2019.2952802.

符号说明
x i ( k ) x_i(k) xi?(k)状态
u i ( k ) u_i(k) ui?(k)控制输入
y i ( k ) y_i(k) yi?(k)测量输出向量
d i d_i di?未知外界干扰信号
f i f_i fi?故障
y i j ( k ) y_i^j(k) yij?(k) i i i j j j 这里获得的输出信息
b i j ( k ) b_i^j(k) bij?(k) i i i j j j 这里获得的攻击信息
x ^ i ( k ) \hat{x}_i(k) x^i?(k)状态的估计值
y ^ i ( k ) \hat{y}_i(k) y^?i?(k)输出的估计值
r i j ( k ) r_i^j(k) rij?(k) i i i j j j 这里获得的残差信息

1. Introduction

2. Preliminaries and Problem Formulation

2.1 System Description

x i ( k + 1 ) = A x i ( k ) + B u i ( k ) + B d d i ( k ) + B f f i ( k ) y i ( k ) = C x i ( k ) + D d d i ( k ) + D f f i ( k ) (1) \begin{aligned} x_i(k+1) &= A x_i(k) + B u_i(k) + &B_d d_i(k) + B_f f_i(k) \\ y_i(k) &= C x_i(k) + &D_d d_i(k) + D_f f_i(k) \end{aligned}\tag{1} xi?(k+1)yi?(k)?=Axi?(k)+Bui?(k)+=Cxi?(k)+?Bd?di?(k)+Bf?fi?(k)Dd?di?(k)+Df?fi?(k)?(1)


袭击模型表示为
y i j ( k ) = y i ( k ) + b i j ( k ) (3) y_i^j(k) = y_i(k) + b_i^j(k) \tag{3} yij?(k)=yi?(k)+bij?(k)(3)

2.2 Anomaly Detector Dynamics

异常检测器:
x ^ i j ( k + 1 ) = A x ^ i j ( k ) + B u i ( k ) + L ( y i j ( k ) ? y ^ i j ( k ) ) y ^ i j ( k ) = C x ^ i j ( k ) r i j ( k ) = V ( y i j ( k ) ? y ^ i j ( k ) ) (5) \begin{aligned} \hat{x}_i^j(k+1) &=A \hat{x}_i^j(k) + Bu_i(k) + L(y_i^j(k) - \hat{y}_i^j(k)) \\ \hat{y}^j_i(k) &=C \hat{x}^j_i(k) \\ r^j_i(k) &=V (y_i^j(k) - \hat{y}_i^j(k)) \end{aligned}\tag{5} x^ij?(k+1)y^?ij?(k)rij?(k)?=Ax^ij?(k)+Bui?(k)+L(yij?(k)?y^?ij?(k))=Cx^ij?(k)=V(yij?(k)?y^?ij?(k))?(5)


残差信号 r i j r_i^j rij? 的 Z 变换为:

r i j ( z ) = V [ G b ( z ) b i j ( z ) + G f ( z ) f i ( z ) + G d d i ( z ) ] G b ( z ) = I ? C ( z I ? A + L C ) ? 1 L G f ( z ) = D f + C ( z I ? A + L C ) ? 1 ( B f ? L D f ) G d ( z ) = D d + C ( z I ? A + L C ) ? 1 ( B d ? L D d ) (7) \begin{aligned} r^j_i(z) &= V [G_b(z) b_{i}^{j}(z) + G_f(z) f_i(z) + G_d d_i(z)] \\ G_b(z) &= I-C(zI - A + LC)^{-1} L \\ G_f(z) &= D_f+C(zI - A + LC)^{-1} (B_f - L D_f) \\ G_d(z) &= D_d+C(zI - A + LC)^{-1} (B_d - L D_d) \\ \end{aligned}\tag{7} rij?(z)Gb?(z)Gf?(z)Gd?(z)?=V[Gb?(z)bij?(z)+Gf?(z)fi?(z)+Gd?di?(z)]=I?C(zI?A+LC)?1L=Df?+C(zI?A+LC)?1(Bf??LDf?)=Dd?+C(zI?A+LC)?1(Bd??LDd?)?(7)

下面给出推导过程。
先将状态值与观测值做差值可得:
x i ( k + 1 ) ? x ^ i j ( k + 1 ) = A x i ( k ) + B u i ( k ) + B d d i ( k ) + B f f i ( k ) ? A x ^ i j ( k ) ? B u i ( k ) ? L ( y i j ( k ) ? y ^ i j ( k ) ) = A ( x i ( k ) ? x ^ i j ( k ) ) + B d d i ( k ) + B f f i ( k ) ? L y i j ( k ) + L y ^ i j ( k ) = A ( x i ( k ) ? x ^ i j ( k ) ) + B d d i ( k ) + B f f i ( k ) ? L y i ( k ) + L y ^ i j ( k ) ? L b i j ( k ) = A ( x i ( k ) ? x ^ i j ( k ) ) + B d d i ( k ) + B f f i ( k ) ? L ( y i ( k ) ? y ^ i j ( k ) ) ? L b i j ( k ) \begin{aligned} x_i(k+1) - \hat{x}_i^j(k+1) &= A x_i(k) + B u_i(k) + B_d d_i(k) + B_f f_i(k) \\ &-\red{A \hat{x}_i^j(k)} - Bu_i(k) - \blue{L(y_i^j(k) - \hat{y}_i^j(k))} \\ &= A (x_i(k)-\red{\hat{x}_i^j(k)}) + B_d d_i(k) + B_f f_i(k) - \blue{Ly_i^j(k) + L\hat{y}_i^j(k)} \\ &= A (x_i(k)-\hat{x}_i^j(k)) + B_d d_i(k) + B_f f_i(k) - \blue{Ly_i(k) + L\hat{y}_i^j(k) - L b_i^j(k)} \\ &= A (x_i(k)-\hat{x}_i^j(k)) + B_d d_i(k) + B_f f_i(k) - L(\green{y_i(k) -\hat{y}_i^j(k)}) - L b_i^j(k) \\ \end{aligned} xi?(k+1)?x^ij?(k+1)?=Axi?(k)+Bui?(k)+Bd?di?(k)+Bf?fi?(k)?Ax^ij?(k)?Bui?(k)?L(yij?(k)?y^?ij?(k))=A(xi?(k)?x^ij?(k))+Bd?di?(k)+Bf?fi?(k)?Lyij?(k)+Ly^?ij?(k)=A(xi?(k)?x^ij?(k))+Bd?di?(k)+Bf?fi?(k)?Lyi?(k)+Ly^?ij?(k)?Lbij?(k)=A(xi?(k)?x^ij?(k))+Bd?di?(k)+Bf?fi?(k)?L(yi?(k)?y^?ij?(k))?Lbij?(k)?

把其中输出值和输出值的观测器之间的差值 y i ( k ) ? y ^ i j ( k ) y_i(k) -\hat{y}_i^j(k) yi?(k)?y^?ij?(k) 单独拿出来。
y i ( k ) ? y ^ i j ( k ) = C x i ( k ) + D d d i ( k ) + D f f i ( k ) ? C x ^ i j ( k ) = C ( x i ( k ) ? x ^ i j ( k ) ) + D d d i ( k ) + D f f i ( k ) \begin{aligned} \green{y_i(k) -\hat{y}_i^j(k)} &= C x_i(k) + D_d d_i(k) + D_f f_i(k) - C \hat{x}^j_i(k) \\ &= C (x_i(k) - \hat{x}^j_i(k)) + D_d d_i(k) + D_f f_i(k) \\ \end{aligned} yi?(k)?y^?ij?(k)?=Cxi?(k)+Dd?di?(k)+Df?fi?(k)?Cx^ij?(k)=C(xi?(k)?x^ij?(k))+Dd?di?(k)+Df?fi?(k)?

那么
x i ( k + 1 ) ? x ^ i j ( k + 1 ) = A ( x i ( k ) ? x ^ i j ( k ) ) + B d d i ( k ) + B f f i ( k ) ? L ( y i ( k ) ? y ^ i j ( k ) ) ? L b i j ( k ) = A ( x i ( k ) ? x ^ i j ( k ) ) + B d d i ( k ) + B f f i ( k ) ? L ( C ( x i ( k ) ? x ^ i j ( k ) ) + D d d i ( k ) + D f f i ( k ) ) ? L b i j ( k ) = A ( x i ( k ) ? x ^ i j ( k ) ) + B d d i ( k ) + B f f i ( k ) ? L C ( x i ( k ) ? x ^ i j ( k ) ) ? L D d d i ( k ) ? L D f f i ( k ) ) ? L b i j ( k ) = ( A ? L C ) ( x i ( k ) ? x ^ i j ( k ) ) + ( B d ? L D d ) d i ( k ) + ( B f ? L D f ) f i ( k ) ? L b i j ( k ) \begin{aligned} x_i(k+1) - \hat{x}_i^j(k+1) &= A (x_i(k)-\hat{x}_i^j(k)) + B_d d_i(k) + B_f f_i(k) - L(\green{y_i(k) -\hat{y}_i^j(k)}) - L b_i^j(k) \\ &= A (x_i(k)-\hat{x}_i^j(k)) + B_d d_i(k) + B_f f_i(k) - L(\green{C (x_i(k) - \hat{x}^j_i(k)) + D_d d_i(k) + D_f f_i(k)}) - L b_i^j(k) \\ &= A (x_i(k)-\hat{x}_i^j(k)) + B_d d_i(k) + B_f f_i(k) - LC (x_i(k) - \hat{x}^j_i(k)) - LD_d d_i(k) - LD_f f_i(k)) - L b_i^j(k) \\ &= (A-LC) (x_i(k)-\hat{x}_i^j(k)) + (B_d-LD_d) d_i(k) + (B_f-LD_f) f_i(k) - L b_i^j(k) \\ \end{aligned} xi?(k+1)?x^ij?(k+1)?=A(xi?(k)?x^ij?(k))+Bd?di?(k)+Bf?fi?(k)?L(yi?(k)?y^?ij?(k))?Lbij?(k)=A(xi?(k)?x^ij?(k))+Bd?di?(k)+Bf?fi?(k)?L(C(xi?(k)?x^ij?(k))+Dd?di?(k)+Df?fi?(k))?Lbij?(k)=A(xi?(k)?x^ij?(k))+Bd?di?(k)+Bf?fi?(k)?LC(xi?(k)?x^ij?(k))?LDd?di?(k)?LDf?fi?(k))?Lbij?(k)=(A?LC)(xi?(k)?x^ij?(k))+(Bd??LDd?)di?(k)+(Bf??LDf?)fi?(k)?Lbij?(k)?

做 Z 变换
x i ( k + 1 ) ? x ^ i j ( k + 1 ) = ( A ? L C ) ( x i ( k ) ? x ^ i j ( k ) ) + ( B d ? L D d ) d i ( k ) + ( B f ? L D f ) f i ( k ) ? L b i j ( k ) z x i ( z ) ? z x ^ i j ( z ) = ( A ? L C ) ( x i ( z ) ? x ^ i j ( z ) ) + ( B d ? L D d ) d i ( z ) + ( B f ? L D f ) f i ( z ) ? L b i j ( z ) z ( x i ( z ) ? x ^ i j ( z ) ) = ( A ? L C ) ( x i ( z ) ? x ^ i j ( z ) ) + ( B d ? L D d ) d i ( z ) + ( B f ? L D f ) f i ( z ) ? L b i j ( z ) ( z I ? A + L C ) ( x i ( z ) ? x ^ i j ( z ) ) = ( B d ? L D d ) d i ( z ) + ( B f ? L D f ) f i ( z ) ? L b i j ( z ) ( x i ( z ) ? x ^ i j ( z ) ) = ( z I ? A + L C ) ? 1 ( B d ? L D d ) d i ( z ) + ( z I ? A + L C ) ? 1 ( B f ? L D f ) f i ( z ) ? ( z I ? A + L C ) ? 1 L b i j ( z ) C ( x i ( z ) ? x ^ i j ( z ) ) = C ( z I ? A + L C ) ? 1 ( B d ? L D d ) d i ( z ) + C ( z I ? A + L C ) ? 1 ( B f ? L D f ) f i ( z ) ? C ( z I ? A + L C ) ? 1 L b i j ( z ) \begin{aligned} x_i(k+1) - \hat{x}_i^j(k+1) &= (A-LC) (x_i(k)-\hat{x}_i^j(k)) + (B_d-LD_d) d_i(k) + (B_f-LD_f) f_i(k) - L b_i^j(k) \\ z x_i(z) - z \hat{x}_i^j(z) &= (A-LC) (x_i(z)-\hat{x}_i^j(z)) + (B_d-LD_d) d_i(z) + (B_f-LD_f) f_i(z) - L b_i^j(z) \\ z (x_i(z) - \hat{x}_i^j(z)) &= (A-LC) (x_i(z)-\hat{x}_i^j(z)) + (B_d-LD_d) d_i(z) + (B_f-LD_f) f_i(z) - L b_i^j(z) \\ (zI-A+LC) (x_i(z) - \hat{x}_i^j(z)) &= (B_d-LD_d) d_i(z) + (B_f-LD_f) f_i(z) - L b_i^j(z) \\ (x_i(z) - \hat{x}_i^j(z)) &= (zI-A+LC)^{-1}(B_d-LD_d) d_i(z) + (zI-A+LC)^{-1}(B_f-LD_f) f_i(z) - (zI-A+LC)^{-1}L b_i^j(z) \\ C(x_i(z) - \hat{x}_i^j(z)) &= C(zI-A+LC)^{-1}(B_d-LD_d) d_i(z) + C(zI-A+LC)^{-1}(B_f-LD_f) f_i(z) - C(zI-A+LC)^{-1}L b_i^j(z) \\ \end{aligned} xi?(k+1)?x^ij?(k+1)zxi?(z)?zx^ij?(z)z(xi?(z)?x^ij?(z))(zI?A+LC)(xi?(z)?x^ij?(z))(xi?(z)?x^ij?(z))C(xi?(z)?x^ij?(z))?=(A?LC)(xi?(k)?x^ij?(k))+(Bd??LDd?)di?(k)+(Bf??LDf?)fi?(k)?Lbij?(k)=(A?LC)(xi?(z)?x^ij?(z))+(Bd??LDd?)di?(z)+(Bf??LDf?)fi?(z)?Lbij?(z)=(A?LC)(xi?(z)?x^ij?(z))+(Bd??LDd?)di?(z)+(Bf??LDf?)fi?(z)?Lbij?(z)=(Bd??LDd?)di?(z)+(Bf??LDf?)fi?(z)?Lbij?(z)=(zI?A+LC)?1(Bd??LDd?)di?(z)+(zI?A+LC)?1(Bf??LDf?)fi?(z)?(zI?A+LC)?1Lbij?(z)=C(zI?A+LC)?1(Bd??LDd?)di?(z)+C(zI?A+LC)?1(Bf??LDf?)fi?(z)?C(zI?A+LC)?1Lbij?(z)?

r i j ( z ) = V ( y i j ( z ) ? y ^ i j ( z ) ) = V ( y i ( z ) + b i j ( z ) ? y ^ i j ( z ) ) = V ( C x i ( z ) + D d d i ( z ) + D f f i ( z ) + b i j ( z ) ? C x ^ i j ( z ) ) = V [ C x i ( z ) + D d d i ( z ) + D f f i ( z ) + b i j ( z ) ? C x ^ i j ( z ) ] = V [ C ( x i ( z ) ? x ^ i j ( z ) ) + D d d i ( z ) + D f f i ( z ) + b i j ( z ) ] = V [ C ( z I ? A + L C ) ? 1 ( B d ? L D d ) d i ( z ) + C ( z I ? A + L C ) ? 1 ( B f ? L D f ) f i ( z ) ? C ( z I ? A + L C ) ? 1 L b i j ( z ) + D d d i ( z ) + D f f i ( z ) + b i j ( z ) ] = V [ C ( z I ? A + L C ) ? 1 ( B d ? L D d ) d i ( z ) + D d d i ( z ) ????? + C ( z I ? A + L C ) ? 1 ( B f ? L D f ) f i ( z ) + D f f i ( z ) ????? ? C ( z I ? A + L C ) ? 1 L b i j ( z ) + b i j ( z ) ] \begin{aligned} r^j_i(z) &= V (\red{y_i^j(z)} - \hat{y}_i^j(z)) \\ &= V (\red{y_i(z) + b_i^j(z)} - \blue{\hat{y}_i^j(z)}) \\ &= V (\red{C x_i(z) + D_d d_i(z) + D_f f_i(z) + b_i^j(z)} - \blue{C \hat{x}^j_i(z)}) \\ &= V [C x_i(z) + D_d d_i(z) + D_f f_i(z) + b_i^j(z) - C \hat{x}^j_i(z)] \\ &= V [\red{C (x_i(z) - \hat{x}^j_i(z))} + D_d d_i(z) + D_f f_i(z) + b_i^j(z)] \\ &= V [\red{C(zI-A+LC)^{-1}(B_d-LD_d) d_i(z) + C(zI-A+LC)^{-1}(B_f-LD_f) f_i(z) - C(zI-A+LC)^{-1}L b_i^j(z)} + D_d d_i(z) + D_f f_i(z) + b_i^j(z)] \\ &= V[ C(zI-A+LC)^{-1}(B_d-LD_d) d_i(z) + D_d d_i(z) \\ &~~~~~+ C(zI-A+LC)^{-1}(B_f-LD_f) f_i(z) + D_f f_i(z) \\ &~~~~~- C(zI-A+LC)^{-1}L b_i^j(z) + b_i^j(z) ] \\ \end{aligned} rij?(z)?=V(yij?(z)?y^?ij?(z))=V(yi?(z)+bij?(z)?y^?ij?(z))=V(Cxi?(z)+Dd?di?(z)+Df?fi?(z)+bij?(z)?Cx^ij?(z))=V[Cxi?(z)+Dd?di?(z)+Df?fi?(z)+bij?(z)?Cx^ij?(z)]=V[C(xi?(z)?x^ij?(z))+Dd?di?(z)+Df?fi?(z)+bij?(z)]=V[C(zI?A+LC)?1(Bd??LDd?)di?(z)+C(zI?A+LC)?1(Bf??LDf?)fi?(z)?C(zI?A+LC)?1Lbij?(z)+Dd?di?(z)+Df?fi?(z)+bij?(z)]=V[C(zI?A+LC)?1(Bd??LDd?)di?(z)+Dd?di?(z)?????+C(zI?A+LC)?1(Bf??LDf?)fi?(z)+Df?fi?(z)??????C(zI?A+LC)?1Lbij?(z)+bij?(z)]?

再令
G b ( z ) = C ( z I ? A + L C ) ? 1 ( B d ? L D d ) + D d G_b(z) = C(zI-A+LC)^{-1}(B_d-LD_d) + D_d Gb?(z)=C(zI?A+LC)?1(Bd??LDd?)+Dd?
G f ( z ) = C ( z I ? A + L C ) ? 1 ( B f ? L D f ) + D f G_f(z) = C(zI-A+LC)^{-1}(B_f-LD_f) + D_f Gf?(z)=C(zI?A+LC)?1(Bf??LDf?)+Df?
G d ( z ) = I ? C ( z I ? A + L C ) ? 1 L G_d(z) = I - C(zI-A+LC)^{-1}L Gd?(z)=I?C(zI?A+LC)?1L

即为论文中的公式(7)。


下面是一些推导过程,暂时保留,最后再将未用到的删除。
z x i ( z ) = A x i ( z ) + B u i ( z ) + B d d i ( z ) + B f f i ( z ) z x i ( z ) ? A x i ( z ) = B u i ( z ) + B d d i ( z ) + B f f i ( z ) ( z I ? A ) x i ( z ) = B u i ( z ) + B d d i ( z ) + B f f i ( z ) x i ( z ) = ( z I ? A ) ? 1 ( B u i ( z ) + B d d i ( z ) + B f f i ( z ) ) y i ( z ) = C x i ( z ) + D d d i ( z ) + D f f i ( z ) y i ( z ) = C ( z I ? A ) ? 1 ( B u i ( z ) + B d d i ( z ) + B f f i ( z ) ) + D d d i ( z ) + D f f i ( z ) y i j ( z ) = y i ( z ) + b i j ( z ) \begin{aligned} z x_i(z) &= A x_i(z) + B u_i(z) + B_d d_i(z) + B_f f_i(z) \\ z x_i(z) - A x_i(z) &= B u_i(z) + B_d d_i(z) + B_f f_i(z) \\ (zI-A) x_i(z) &= B u_i(z) + B_d d_i(z) + B_f f_i(z) \\ x_i(z) &= (zI-A)^{-1} (B u_i(z) + B_d d_i(z) + B_f f_i(z) ) \\ \\ y_i(z) &= C x_i(z) + D_d d_i(z) + D_f f_i(z) \\ y_i(z) &= C (zI-A)^{-1} (B u_i(z) + B_d d_i(z) + B_f f_i(z) ) + D_d d_i(z) + D_f f_i(z) \\ \\ y_i^j(z) &= y_i(z) + b_i^j(z) \\ \end{aligned} zxi?(z)zxi?(z)?Axi?(z)(zI?A)xi?(z)xi?(z)yi?(z)yi?(z)yij?(z)?=Axi?(z)+Bui?(z)+Bd?di?(z)+Bf?fi?(z)=Bui?(z)+Bd?di?(z)+Bf?fi?(z)=Bui?(z)+Bd?di?(z)+Bf?fi?(z)=(zI?A)?1(Bui?(z)+Bd?di?(z)+Bf?fi?(z))=Cxi?(z)+Dd?di?(z)+Df?fi?(z)=C(zI?A)?1(Bui?(z)+Bd?di?(z)+Bf?fi?(z))+Dd?di?(z)+Df?fi?(z)=yi?(z)+bij?(z)?

z x ^ i j ( z ) = A x ^ i j ( z ) + B u i ( z ) + L ( y i j ( z ) ? y ^ i j ( z ) ) ( z I ? A ) x ^ i j ( z ) = B u i ( z ) + L ( y i j ( z ) ? y ^ i j ( z ) ) x ^ i j ( z ) = ( z I ? A ) ? 1 ( B u i ( z ) + L y i j ( z ) ? L y ^ i j ( z ) ) x ^ i j ( z ) = ( z I ? A ) ? 1 ( B u i ( z ) + L y i j ( z ) ) ? ( z I ? A ) ? 1 L y ^ i j ( z ) ( z I ? A ) ? 1 L C x ^ i j ( z ) + x ^ i j ( z ) = ( z I ? A ) ? 1 ( B u i ( z ) + L y i j ( z ) ) ( ( z I ? A ) ? 1 L C + I ) x ^ i j ( z ) = ( z I ? A ) ? 1 ( B u i ( z ) + L y i j ( z ) ) ( ( z I ? A ) ? 1 L C + I ) x ^ i j ( z ) = ( z I ? A ) ? 1 ( B u i ( z ) + L y i ( z ) + L b i j ( z ) ) ( ( z I ? A ) ? 1 L C + I ) x ^ i j ( z ) = ( z I ? A ) ? 1 ( B u i ( z ) + L C x i ( z ) + L b i j ( z ) ) y ^ i j ( z ) = C x ^ i j ( z ) = C ( z I ? A ) ? 1 ( B u i ( z ) + L ( y i j ( z ) ? y ^ i j ( z ) ) ) = C ( z I ? A ) ? 1 ( B u i ( z ) + L y i j ( z ) ? L y ^ i j ( z ) ) = C ( z I ? A ) ? 1 ( B u i ( z ) + L y i j ( z ) ) ? C ( z I ? A ) ? 1 L y ^ i j ( z ) y ^ i j ( z ) + C ( z I ? A ) ? 1 L y ^ i j ( z ) = C ( z I ? A ) ? 1 ( B u i ( z ) + L y i j ( z ) ) ( C ( z I ? A ) ? 1 L + I ) y ^ i j ( z ) = C ( z I ? A ) ? 1 ( B u i ( z ) + L y i j ( z ) ) ( C ( z I ? A ) ? 1 L + I ) y ^ i j ( z ) = C ( z I ? A ) ? 1 B u i ( z ) + C ( z I ? A ) ? 1 L y i j ( z ) ( C ( z I ? A ) ? 1 L + I ) y ^ i j ( z ) = C ( z I ? A ) ? 1 B u i ( z ) + C ( z I ? A ) ? 1 L y i j ( z ) r i j ( z ) = V ( y i j ( z ) ? y ^ i j ( z ) ) \begin{aligned} z\hat{x}_i^j(z) &=A \hat{x}_i^j(z) + Bu_i(z) + L(y_i^j(z) - \hat{y}_i^j(z)) \\ (zI-A) \hat{x}_i^j(z) &= Bu_i(z) + L(y_i^j(z) - \hat{y}_i^j(z)) \\ \hat{x}_i^j(z) &= (zI-A)^{-1} (Bu_i(z) + Ly_i^j(z) - L \hat{y}_i^j(z)) \\ \hat{x}_i^j(z) &= (zI-A)^{-1} (Bu_i(z) + Ly_i^j(z)) - (zI-A)^{-1} L \hat{y}_i^j(z) \\ (zI-A)^{-1} L C \hat{x}_i^j(z) + \hat{x}_i^j(z) &= (zI-A)^{-1} (Bu_i(z) + Ly_i^j(z)) \\ ((zI-A)^{-1} L C + I) \hat{x}_i^j(z) &= (zI-A)^{-1} (Bu_i(z) + Ly_i^j(z)) \\ ((zI-A)^{-1} L C + I) \hat{x}_i^j(z) &= (zI-A)^{-1} (Bu_i(z) + Ly_i(z) + L b_i^j(z)) \\ ((zI-A)^{-1} L C + I) \hat{x}_i^j(z) &= (zI-A)^{-1} (Bu_i(z) + L C x_i(z) + L b_i^j(z)) \\ \\ \hat{y}^j_i(z) &=C \hat{x}^j_i(z) \\ &= C (zI-A)^{-1} (Bu_i(z) + L(y_i^j(z) - \hat{y}_i^j(z))) \\ &= C (zI-A)^{-1} (Bu_i(z) + Ly_i^j(z) - L\hat{y}_i^j(z)) \\ &= C (zI-A)^{-1} (Bu_i(z) + Ly_i^j(z)) - C (zI-A)^{-1} L\hat{y}_i^j(z) \\ \hat{y}^j_i(z) + C (zI-A)^{-1} L\hat{y}_i^j(z) &= C (zI-A)^{-1} (Bu_i(z) + Ly_i^j(z)) \\ (C (zI-A)^{-1} L + I )\hat{y}_i^j(z) &= C (zI-A)^{-1} (Bu_i(z) + Ly_i^j(z)) \\ (C (zI-A)^{-1} L + I )\hat{y}_i^j(z) &= C (zI-A)^{-1} Bu_i(z) + C (zI-A)^{-1} Ly_i^j(z) \\ (C (zI-A)^{-1} L + I )\hat{y}_i^j(z) &= C (zI-A)^{-1} Bu_i(z) + C (zI-A)^{-1} Ly_i^j(z) \\ \\ r^j_i(z) &=V (y_i^j(z) - \hat{y}_i^j(z)) \end{aligned} zx^ij?(z)(zI?A)x^ij?(z)x^ij?(z)x^ij?(z)(zI?A)?1LCx^ij?(z)+x^ij?(z)((zI?A)?1LC+I)x^ij?(z)((zI?A)?1LC+I)x^ij?(z)((zI?A)?1LC+I)x^ij?(z)y^?ij?(z)y^?ij?(z)+C(zI?A)?1Ly^?ij?(z)(C(zI?A)?1L+I)y^?ij?(z)(C(zI?A)?1L+I)y^?ij?(z)(C(zI?A)?1L+I)y^?ij?(z)rij?(z)?=Ax^ij?(z)+Bui?(z)+L(yij?(z)?y^?ij?(z))=Bui?(z)+L(yij?(z)?y^?ij?(z))=(zI?A)?1(Bui?(z)+Lyij?(z)?Ly^?ij?(z))=(zI?A)?1(Bui?(z)+Lyij?(z))?(zI?A)?1Ly^?ij?(z)=(zI?A)?1(Bui?(z)+Lyij?(z))=(zI?A)?1(Bui?(z)+Lyij?(z))=(zI?A)?1(Bui?(z)+Lyi?(z)+Lbij?(z))=(zI?A)?1(Bui?(z)+LCxi?(z)+Lbij?(z))=Cx^ij?(z)=C(zI?A)?1(Bui?(z)+L(yij?(z)?y^?ij?(z)))=C(zI?A)?1(Bui?(z)+Lyij?(z)?Ly^?ij?(z))=C(zI?A)?1(Bui?(z)+Lyij?(z))?C(zI?A)?1Ly^?ij?(z)=C(zI?A)?1(Bui?(z)+Lyij?(z))=C(zI?A)?1(Bui?(z)+Lyij?(z))=C(zI?A)?1Bui?(z)+C(zI?A)?1Lyij?(z)=C(zI?A)?1Bui?(z)+C(zI?A)?1Lyij?(z)=V(yij?(z)?y^?ij?(z))?

r i j ( z ) = V ( y i j ( z ) ? y ^ i j ( z ) ) = V ( y i ( z ) + b i j ( z ) ? y ^ i j ( z ) ) = V ( C x i ( z ) + D d d i ( z ) + D f f i ( z ) + b i j ( z ) ? C x ^ i j ( z ) ) = V ( C x i ( z ) + D d d i ( z ) + D f f i ( z ) + b i j ( z ) ? C x ^ i j ( z ) ) = V ( C ( x i ( z ) ? x ^ i j ( z ) ) + D d d i ( z ) + D f f i ( z ) + b i j ( z ) ) = V ( C ( x i ( z ) ? x ^ i j ( z ) ) + D d d i ( z ) + D f f i ( z ) + b i j ( z ) ) \begin{aligned} r^j_i(z) &= V (\red{y_i^j(z)} - \hat{y}_i^j(z)) \\ &= V (\red{y_i(z) + b_i^j(z)} - \blue{\hat{y}_i^j(z)}) \\ &= V (\red{C x_i(z) + D_d d_i(z) + D_f f_i(z) + b_i^j(z)} - \blue{C \hat{x}^j_i(z)}) \\ &= V (\red{C x_i(z) + D_d d_i(z) + D_f f_i(z) + b_i^j(z)} - \blue{C \hat{x}^j_i(z)}) \\ &= V (\red{C (x_i(z) - \blue{\hat{x}^j_i(z)}) + D_d d_i(z) + D_f f_i(z) + b_i^j(z)}) \\ &= V (\red{C (x_i(z) - \blue{\hat{x}^j_i(z)}) + D_d d_i(z) + D_f f_i(z) + b_i^j(z)}) \\ \end{aligned} rij?(z)?=V(yij?(z)?y^?ij?(z))=V(yi?(z)+bij?(z)?y^?ij?(z))=V(Cxi?(z)+Dd?di?(z)+Df?fi?(z)+bij?(z)?Cx^ij?(z))=V(Cxi?(z)+Dd?di?(z)+Df?fi?(z)+bij?(z)?Cx^ij?(z))=V(C(xi?(z)?x^ij?(z))+Dd?di?(z)+Df?fi?(z)+bij?(z))=V(C(xi?(z)?x^ij?(z))+Dd?di?(z)+Df?fi?(z)+bij?(z))?


2.3 Problem Formulation

3. Secure Scheme Design for MASs

3.1 Independent Anomaly Detection


下述仿真和分析对应于程序 Main_2020_AnomalyDetector.m

首先看下不发生异常时,系统(如论文中公式(1))正常运行,运行效果如下图左半部分所示。
同时构建的观测器都能成功观测到系统的状态值,观测效果如下图右半部分所示。
在这里插入图片描述

接下来加入攻击信号, b 1 2 b_1^2 b12? 意味着信息从智能体 2 传递给 1 时出现了攻击。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

至此,完成了对论文中 Algorithm 1 的实现。


在这里插入图片描述

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-06-08 19:12:50  更:2022-06-08 19:14:15 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/30 0:47:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码