5G NR Type II CSI Codebook简介
5G NR Type II Codebook相较于Type I Codebook拥有更高的复杂度和更高的精度。和LTE的Advanced CSI Codebook类似,都有做Linear Combination,但是LTE只从一群Beam Group中挑出两个彼此正交的beam来完成Linear Combination。而5G NR type II CSI Codebook则可以从一群Beam Group中挑选出2/3/4个彼此正交的Beam来完成Linear Combination。另外,除了挑选beam外,每个beam都会有一个对应的幅度和相位调整,幅度调整可以是Wideband与subband同时调整,也可以是Wideband单独调整,但是相位只能由subband调整。因此,更多的beam组合、整合幅度调整和相位调整,使得NR type II CSI Codebook拥有更高的复杂度和精度。
5G NR Type II CSI Codebook的一些基础限制
- 目前NR Type II CSI Codebook的layer数,即rank数最高只支持2。
- Linear Combination支持的Beam的数量为2/3/4,并且彼此正交。
- 幅度调整(Amplitude scaling)可以分为Wideband+Subband或Wideband only。
- 相位调整是在Subband上操作,相位的选择可以为QPSK(2bit)或者8-PSK(3bit)。
简单概述: NR Type II CSI for rank 1 and 2
?
\huge \cdot
? PMI Codebook (PMI: Precoder Matrix Index)的两种预编码结构:
-
rank=1
W
=
[
w
~
0
,
0
w
~
1
,
0
]
=
W
1
W
2
,
??
W
?is?normalized?to?1
(1)
\boldsymbol W = \left[ \begin{array}{c} \tilde \boldsymbol w_{0,0} \\ \tilde \boldsymbol w_{1,0} \\ \end{array} \right] = \boldsymbol W_1 \boldsymbol W_2, \ \ \boldsymbol W \text{ is normalized to 1} \tag{1}
W=[w~0,0?w~1,0??]=W1?W2?,??W?is?normalized?to?1(1) -
rank=2
W
=
[
w
~
0
,
0
w
~
0
,
1
w
~
1
,
0
w
~
1
,
1
]
=
W
1
W
2
,
??columns?of?
W
?is?normalized?to?
1
2
(2)
\boldsymbol W = \left[ \begin{array}{c} &\tilde \boldsymbol w_{0,0} & \tilde \boldsymbol w_{0,1} \\ &\tilde \boldsymbol w_{1,0} & \tilde \boldsymbol w_{1,1} \\ \end{array} \right] = \boldsymbol W_1 \boldsymbol W_2, \ \ \text{columns of } \boldsymbol W \text{ is normalized to } \frac{1}{\sqrt 2} \tag{2}
W=[?w~0,0?w~1,0??w~0,1?w~1,1??]=W1?W2?,??columns?of?W?is?normalized?to?2
?1?(2)
?
\huge \cdot
? Wighted Linear Combination of several beams
w
~
r
,
l
=
∑
i
=
0
L
b
k
1
(
i
)
k
2
(
i
)
?
p
r
,
l
,
i
W
B
?
p
r
,
l
,
i
S
B
?
c
r
,
l
,
i
(3)
\tilde \boldsymbol w_{r,l} = \sum_{i=0}^{L} \boldsymbol b_{k^{(i)}_1 k^{(i)}_2} \cdot p^{WB}_{r,l,i} \cdot p^{SB}_{r,l,i} \cdot c_{r,l,i} \tag{3}
w~r,l?=i=0∑L?bk1(i)?k2(i)???pr,l,iWB??pr,l,iSB??cr,l,i?(3)
????
\text{ } \ \ \text{ }
????对上式的理解要注意以下几点:
-
beam的数量
L
L
L是可以设置的:
L
∈
{
2
,
3
,
4
}
L \in \{2,3,4\}
L∈{2,3,4}。注意,若令
N
1
N_1
N1?为水平方向的双极化天线数,令
N
2
N_2
N2?为竖直方向的双极化天线数,那么总的极化天线数为
P
C
S
I
?
R
S
=
2
N
1
N
2
P_{CSI-RS}=2N_1N_2
PCSI?RS?=2N1?N2?,
P
C
S
I
?
R
S
P_{CSI-RS}
PCSI?RS?与
L
L
L的关系为:
L
=
2
?when?
P
C
S
I
?
R
S
=
4
L
∈
{
2
,
3
,
4
}
?when?
P
C
S
I
?
R
S
>
4
(4)
\begin{aligned} L=2 &\text{ when } P_{CSI-RS} = 4 \\ L\in\{2,3,4\} &\text{ when } P_{CSI-RS} > 4 \\ \end{aligned} \tag{4}
L=2L∈{2,3,4}??when?PCSI?RS?=4?when?PCSI?RS?>4?(4) -
b
k
1
(
i
)
k
2
(
i
)
\boldsymbol b_{k^{(i)}_1 k^{(i)}_2}
bk1(i)?k2(i)??是过采样的2D DFT beam。 -
r
=
0
,
1
r=0,1
r=0,1表示极化方向,
l
=
0
,
1
l=0,1
l=0,1表示第几个layer (rank),要注意区分
i
i
i 和
l
l
l ,
i
i
i表示第
i
i
i个beam,
l
l
l表示rank。 -
p
r
,
l
,
i
W
B
p^{WB}_{r,l,i}
pr,l,iWB? : Wideband beam amplitude scaling factor for beam
i
i
i on polarization
r
r
r and layer
l
l
l. -
p
r
,
l
,
i
S
B
p^{SB}_{r,l,i}
pr,l,iSB?: Subband beam amplitude scaling factor for beam
i
i
i on polarization
r
r
r and layer
l
l
l. -
c
r
,
l
,
i
c_{r,l,i}
cr,l,i?: Beam combining coefficient (phase) for beam
i
i
i on polarization
r
r
r and layer
l
l
l. 可以设置为QPSK(2 bit)或者8-PSK(3 bit)。
补充一点,式(3)可以看出,
L
L
L个DFT beam与polarization
r
r
r 无关,与layer
l
l
l 也无关,选定的beam是什么就用什么,幅度、相位等等再具体做调整。另外,这里我还想强调一点,但这只是我的理解,读者感兴趣的话可以想一想。一般地,矩阵
W
1
\boldsymbol W_1
W1?表示信道的 long-term frequency-independent characteristics,字面上不太好看出来,但是我理解的就是该通信系统所处的信道环境,比如反射、散射物的位置在较长时间内认为不发生变化,那么根据实际的物理环境,我们认为在这较长的时间范围,从发送端打出去的beam,在方向上几乎是保持不变的。
这里给出一个示例,多个beam的线性组合反馈,包括幅度调整(WB Only)和相位调整
Wideband中的Beam选取(Wideband Only)
这部分我们将说明如何从Beam Group中挑选出
L
L
L 个正交的Beam,挑选出来的这些beam的索引由
i
11
i_{11}
i11?和
i
1
,
2
i_{1,2}
i1,2?决定:
-
i
11
i_{11}
i11?: 决定Beam Group中哪些Beam是正交的
-
i
12
i_{12}
i12?: 从
i
11
i_{11}
i11?所决定的那些彼此正交的Beam中挑选出
L
L
L个
Unconstrained beam selection from the orthogonal basis 我们先给出一个oversampled DFT beam的例子,令
O
1
,
O
2
O_1, O_2
O1?,O2?分别为水平、竖直方向的过采样数,下图是一个
(
N
1
,
N
2
,
O
1
,
O
2
)
=
(
2
,
2
,
4
,
4
)
(N_1, N_2, O_1, O_2) = (2, 2, 4, 4)
(N1?,N2?,O1?,O2?)=(2,2,4,4)的例子
图中黄色的四个方格表示4个正交的beam,
k
1
,
k
2
k_1,k_2
k1?,k2?分别表示水平和竖直方向上的beam索引(坐标),我们对图中的一些参数做具体的解释
-
水平方向的Beam索引 (
1
s
t
1^{st}
1st dimension) 水平方向的Beam索引我们用
k
i
(
1
)
k^{(1)}_i
ki(1)?表征,表示所选取的第
i
i
i个beam的横坐标,具体可写为
k
i
(
1
)
=
O
1
?
n
1
(
i
)
+
q
1
,
??
i
=
0
,
?
?
,
L
?
1
(5)
k^{(1)}_i = O_1 \cdot n^{(i)}_1 + q_1, \ \ i=0,\cdots,L-1 \tag{5}
ki(1)?=O1??n1(i)?+q1?,??i=0,?,L?1(5) -
竖直方向的Beam索引 (
2
n
d
2^{nd}
2nd dimension) 竖直方向的Beam索引我们用
k
i
(
2
)
k^{(2)}_i
ki(2)?表征,表示所选取的第
i
i
i个beam的纵坐标,具体可写为
k
i
(
2
)
=
O
2
?
n
2
(
i
)
+
q
2
,
??
i
=
0
,
?
?
,
L
?
1
(6)
k^{(2)}_i = O_2 \cdot n^{(i)}_2 + q_2, \ \ i=0,\cdots,L-1 \tag{6}
ki(2)?=O2??n2(i)?+q2?,??i=0,?,L?1(6)
进一步,我们对参数
n
1
,
n
2
n_1, n_2
n1?,n2?和
q
1
,
q
2
q_1, q_2
q1?,q2?做具体解释。
首先,我们要明确,当我们确定相关的天线数
N
1
,
N
2
N_1,N_2
N1?,N2?时,我们实际上就已经可以确定(知道)一组正交的DFT beams,实际上就是图中黄色的4个beam,可以理解为最基本的4个正交beam,这也意味着,我们可以把
n
1
(
i
)
.
n
2
(
i
)
n^{(i)}_1.n^{(i)}_2
n1(i)?.n2(i)?理解为是基准的正交beam的索引,由
i
12
i_{12}
i12? 表征,
n
1
(
i
)
=
0
,
?
?
,
N
1
?
1
;
??
n
2
(
i
)
=
0
,
?
?
,
N
2
?
1.
??
(
orthogonal?beam?indices,?
i
12
)
(7)
n^{(i)}_1 = 0, \cdots, N_1-1; \ \ n^{(i)}_2 = 0, \cdots, N_2-1. \ \ ( \text{orthogonal beam indices, } i_{12}) \tag{7}
n1(i)?=0,?,N1??1;??n2(i)?=0,?,N2??1.??(orthogonal?beam?indices,?i12?)(7)
然后,当我们理解基准正交DFT beams后,我们再来看参数
q
1
,
q
2
q_1, q_2
q1?,q2?,这两个参数的理解相对比较简单,由上图可以知道,它们所表征的就是基准正交DFT beams的旋转(rotation),
q
1
q_1
q1?表示水平方向beam的旋转,
q
2
q_2
q2?表示竖直方向beam的旋转,具体为
q
1
=
0
,
?
?
,
O
1
?
1
;
??
q
2
=
0
,
?
O
2
?
1.
??
(
rotation?factors
,
i
11
)
(8)
q_1 = 0,\cdots,O_1-1; \ \ q_2 = 0,\cdots O_2 - 1. \ \ (\text{rotation factors}, i_{11}) \tag{8}
q1?=0,?,O1??1;??q2?=0,?O2??1.??(rotation?factors,i11?)(8)
这里给出
(
N
1
,
N
2
)
(N_1,N_2)
(N1?,N2?)和
(
O
1
,
O
2
)
(O_1,O_2)
(O1?,O2?)的一些参数配置
每个Beam的幅度和相位反馈
决定一组正交的Beam之后,我们再来决定每个Beam的幅度和相位,我们分别对幅度调整和相位调整的索引进行说明:
-
幅度调整对应的索引 (1) Wideband Amplitude:
i
14
i_{14}
i14?表征宽带幅度调整的索引,独立于每个Beam、每个Polarization与layer,每个
i
14
i_{14}
i14?有8种选择(对应3个bit)。这8种幅度可取的集合为:
{
1
,
1
2
,
1
4
,
1
8
,
1
1
6
,
1
3
2
,
1
6
4
,
0
}
(9)
\{1, \frac{1}{\sqrt 2}, \frac{1}{\sqrt 4}, \frac{1}{\sqrt 8}, \frac{1}{\sqrt 16}, \frac{1}{\sqrt 32}, \frac{1}{\sqrt 64}, 0 \} \tag{9}
{1,2
?1?,4
?1?,8
?1?,1
?61?,3
?21?,6
?41?,0}(9) (2) Subband Amplititude:
i
22
i_{22}
i22?表征子带上幅度调整的索引,独立于每个Beam、每个Polarization与layer,每个
i
2
i_{2}
i2?有2种选择(对应1个bit)。这2种幅度可取的集合为:
{
1
,
1
2
}
(10)
\{1, \frac{1}{\sqrt 2}\} \tag{10}
{1,2
?1?}(10) -
相位调整对应的索引 subband phase:
i
21
i_{21}
i21?: 表征子带上相位调整的索引,独立于每个Beam、每个Polarization与layer,可分为8-PSK(3 bit)和QPSK(2 bit)。
QPSK:?
{
e
j
π
n
2
,
?
n
=
0
,
1
,
2
,
3
}
8-PSK:?
{
e
j
π
n
4
,
?
n
=
0
,
1
,
?
?
,
7
}
(11)
\begin{aligned} \text{QPSK: } &\{e^{j \frac{\pi n}{2}}, \ n=0,1,2,3\} \\ \text{8-PSK: } & \{ e^{j\frac{\pi n}{4}} , \ n=0,1,\cdots,7 \} \end{aligned} \tag{11}
QPSK:?8-PSK:??{ej2πn?,?n=0,1,2,3}{ej4πn?,?n=0,1,?,7}?(11)
上面所提及的“独立于每个Beam、每个Polarization与layer”是指系统要分别独立地为每个beam
i
i
i,每个polarization
r
r
r, 每个layer
l
l
l 提供幅度和相位,并且不同的
(
r
,
l
,
i
)
(r,l,i)
(r,l,i)所对应的幅度或相位值都可能不一样,相互之间没有联系。
另外,我们还要补充一个索引
i
13
i_{13}
i13?: 2L个beam中(这里说2L个beam是考虑双极化天线)最强的beam,该beam的所有系数,包括幅度和相位都为1。
幅度和相位调整的比特分配
我们把(Wideband amplitude:
i
14
i_{14}
i14?, Subband amplitude:
i
22
i_{22}
i22?, Subband phase:
i
21
i_{21}
i21?)量化为
(
X
,
Y
,
Z
)
(X, Y, Z)
(X,Y,Z) bits的形式(这里指多少个bit)
-
注意,对每一个 layer,the leading (strongest) coefficient (
i
13
i_{13}
i13?)对应于所有
2
L
2L
2L个beams中最强的beam,事实上,对于这个beam,并不需要额外反馈什么,因为我们知道它所对应的系数为1。即
(
X
,
Y
,
Z
)
=
(
0
,
0
,
0
)
?The?leading?(strongest)?coefficient?
=
1
\begin{aligned} (X, Y, Z) = (0, 0, 0) \\ \text{ The leading (strongest) coefficient } = 1 \end{aligned}
(X,Y,Z)=(0,0,0)?The?leading?(strongest)?coefficient?=1? -
WB+SB amplitude
(
X
,
Y
)
=
(
3
,
1
)
(X,Y)=(3,1)
(X,Y)=(3,1) and
Z
∈
{
2
,
3
}
Z \in \{2, 3\}
Z∈{2,3} for the first
[
min
?
(
K
?
1
,
M
l
)
]
[\min(K-1, M_l)]
[min(K?1,Ml?)] leading (strongest) coefficients out of
(
2
L
?
1
)
(2L-1)
(2L?1) coefficients, and
(
X
,
Y
,
Z
)
=
(
3
,
0
,
2
)
(X, Y, Z) = (3, 0, 2)
(X,Y,Z)=(3,0,2) for the remaining
[
2
L
?
min
?
(
K
,
M
l
+
1
)
]
[2L - \min(K,M_l+1)]
[2L?min(K,Ml?+1)] coefficients. 其中,
M
l
M_l
Ml? is the number of elements of
i
14
i_{14}
i14? that satisfy
i
14
>
0
i_{14} > 0
i14?>0;
K
K
K和
L
L
L的对应关系如下图所示
- WB-Only amplitude, i.e.
Y
=
0
Y=0
Y=0
(
X
,
Y
)
=
(
3
,
0
)
?and?
Z
∈
{
2
,
3
}
(X,Y) = (3,0) \text{ and } Z \in \{2,3\}
(X,Y)=(3,0)?and?Z∈{2,3}
PMI Indices小结
-
一般认为PMI Codebook具有下面两种结构 (1) rank=1
W
=
[
w
~
0
,
0
w
~
1
,
0
]
=
W
1
W
2
,
??
W
?is?normalized?to?1
\boldsymbol W = \left[ \begin{array}{c} \tilde \boldsymbol w_{0,0} \\ \tilde \boldsymbol w_{1,0} \\ \end{array} \right] = \boldsymbol W_1 \boldsymbol W_2, \ \ \boldsymbol W \text{ is normalized to 1}
W=[w~0,0?w~1,0??]=W1?W2?,??W?is?normalized?to?1 (2) rank=2
W
=
[
w
~
0
,
0
w
~
0
,
1
w
~
1
,
0
w
~
1
,
1
]
=
W
1
W
2
,
??columns?of?
W
?is?normalized?to?
1
2
\boldsymbol W = \left[ \begin{array}{c} &\tilde \boldsymbol w_{0,0} & \tilde \boldsymbol w_{0,1} \\ &\tilde \boldsymbol w_{1,0} & \tilde \boldsymbol w_{1,1} \\ \end{array} \right] = \boldsymbol W_1 \boldsymbol W_2, \ \ \text{columns of } \boldsymbol W \text{ is normalized to } \frac{1}{\sqrt 2}
W=[?w~0,0?w~1,0??w~0,1?w~1,1??]=W1?W2?,??columns?of?W?is?normalized?to?2
?1? -
上式所描述的分块向量
w
~
r
,
l
\tilde \boldsymbol w_{r,l}
w~r,l?可以表示为下面加权线性组合的形式
w
~
r
,
l
=
∑
i
=
0
L
b
k
1
(
i
)
k
2
(
i
)
?
p
r
,
l
,
i
W
B
?
p
r
,
l
,
i
S
B
?
c
r
,
l
,
i
??wighted?combination?of?L?beams
\tilde \boldsymbol w_{r,l} = \sum_{i=0}^{L} \boldsymbol b_{k^{(i)}_1 k^{(i)}_2} \cdot p^{WB}_{r,l,i} \cdot p^{SB}_{r,l,i} \cdot c_{r,l,i} \ \ \text{wighted combination of L beams}
w~r,l?=i=0∑L?bk1(i)?k2(i)???pr,l,iWB??pr,l,iSB??cr,l,i???wighted?combination?of?L?beams -
索引的描述
上图中,我们可以把
(
k
1
(
i
)
,
k
2
(
i
)
)
(k^{(i)}_1, k^{(i)}_2)
(k1(i)?,k2(i)?)理解为是beam的横纵坐标。
Type II Codebook小结
- 使用beam的数量
-
L
=
2
,
3
,
4
L=2,3,4
L=2,3,4 对应到(Number of strongest beam K=4,4,6,注意这里有考虑到双极化)
- 幅度调整
- WB+SB: SB have 2 selections for the strongest
min
?
(
K
?
1
,
M
l
)
\min(K-1, M_l)
min(K?1,Ml?) (1bit) beams, and one selection for the remaining
2
L
?
min
?
(
K
,
M
l
+
1
)
2L -\min(K, M_l+1)
2L?min(K,Ml?+1) beams (0 bit).
- WB only
(Note:
W
l
W_l
Wl? is the number of elements of
i
14
i_{14}
i14? (Wideband amplitude) that satisfy
i
14
≥
0
i_{14} \geq 0
i14?≥0 ) - 相位调整
- 8-PSK: for the strongest
min
?
(
K
?
1
,
M
l
)
\min(K-1, M_l)
min(K?1,Ml?) (3bit) beams, and QPSK for the remaining
2
L
?
min
?
(
K
,
M
l
+
1
)
2L -\min(K, M_l+1)
2L?min(K,Ml?+1) beams (2 bit).
- QPSK
- 支持的layer数
参考
[1] https://www.commresearch.com.tw/Blog/ViewArticle.aspx?guid=28dd1d3f-0f06-4566-8d29-e0e1c9f79c25 [2] http://www.sharetechnote.com/html/5G/5G_CSI_RS_Codebook.html#What_is_Codebook [3] E. Onggosanusi et al., “Modular and High-Resolution Channel State Information and Beam Management for 5G New Radio,” in IEEE Communications Magazine, vol. 56, no. 3, pp. 48-55, March 2018, doi: 10.1109/MCOM.2018.1700761.
|