IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 算法:从暴力递归到动态规划 -> 正文阅读

[数据结构与算法]算法:从暴力递归到动态规划

算法:从暴力递归到动态规划

前言

本文通过介绍一道LeetCode算法题的三种解法(Java代码实现),分析各解法的复杂度及优缺点,探索它们的内在逻辑联系,分享一种算法优化思路。

题目

LeetCode 139题:单词拆分
给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请判断是否可以利用字典中出现的单词拼接出 s 。
注意:
不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
案例:
输入:s = “leetcode”, wordDict = [“leet”, “code”]
输出:true

解法1 - 暴力递归

首先,理解题目的意思,就是要将字符串 s 拆分为多个子串,使得每个子串都在字典 wordDict 出现。最简单的思路就是穷举所有的拆分可能性,如果存在一种满足题意,那么有解,否则无解。我们可以枚举第一个子串,如果第一个子串在字典中出现,那么只需要判断剩余部分能否拆分,显然这是一个规模更小的子问题,可以直接用递归实现。代码如下:

public boolean wordBreak(String s, Set<String> wordSet) {
    if ("".equals(s)) return true;
    //枚举第一个子串
    for (int i = 1; i <= s.length(); i++) {
        //若这个子串在字典中出现,则将原串剩余部分递归
        if (wordSet.contains(s.substring(0, i))) {
            if (wordBreak(s.substring(i), wordSet)) return true;
        }
    }
    return false;
}

代码很简单,对程序员友好,但对电脑可能不太友好,为什么?我们分析下时间复杂度。设 s 的长度为 n ,每层函数有一个 for 循环,第一层长度为 n ,第二层长度最长可达 n - 1 ,第三层函数长度最长可达 n - 2,… ,相乘为 n! ,故时间复杂度为 O(n!) ,n 值稍微大一点,计算量就是天文数字,另外,还可能因为递归过深导致栈溢出。

解法2 - 记忆搜索

仔细分析上述的求解过程,可以发现递归过程其实存在很多重复计算。比如 s = “aaxxxxx” ,拆出 “a” ,“a”,求 “xxxxx” 是否可拆 ,拆出 “aa” ,求 “xxxxx” 是否可拆,多次求解 “xxxxx” 必定得到相同的结果,很显然这种重复计算是没有必要的,那么很自然可以想到,同类问题只求一次,然后把答案缓存起来,下次同类问题直接查缓存,就可以避免重复计算了。代码如下:

public boolean wordBreak(String s, Set<String> wordSet) {
    Map<Integer, Boolean> map = new HashMap<>();
    return wordBreak(s, 0, map, wordSet);
}

private boolean wordBreak(String s, int begin, Map<Integer, Boolean> map, Set<String> wordSet) {
    if (begin == s.length()) return true;
    //枚举第一个子串
    for (int i = begin + 1; i <= s.length(); i++) {
        //若能匹配单词
        if (wordSet.contains(s.substring(begin, i))) {
            //查哈希表看能否直接得到结果,查不到则递归求解
            Boolean flag = map.get(i);
            if (flag == null) {
                flag = wordBreak(s, i, map, wordSet);
                map.put(i, flag);
            }
            if (flag) return true;
        }
    }
    return false;
}

通过上述改进,我们保证了每个子问题只被求解一次,由于每次都是拆出第一个子串,将剩余部分递归,剩余部分是一个从原串的任意位置起到其末尾位置的子串,一共有 n 种可能,故子问题的个数为 n ,所以最多递归 n 次,开辟 n 个函数,每个函数有一层 for 循环,长度最大为 n ,所以时间复杂度为 O(n^2) ,相比于 O(n!) 得到了质的飞跃,但是由于沿用递归,在递归深度过大时,仍然存在栈溢出的可能。

解法3 - 动态规划

进一步分析上述解法,可以发现一个现象,每次求解一个问题,总是要先求规模更小的子问题,子问题又依赖规模更小的子问题,缓存表中最先出现最小问题的解,然后出现较小问题的解,然后出现较大问题的解,最后出现原问题的解,并且每个问题的解都依赖于所有比这个问题更小的子问题的解。
设字符串 s 的长度为 n ,问题抽象为函数 f(n) ,n = 5 ,那么求 f(5) 必先求 f(4)、f(3)、(2)、f(1) ,求 f(4) 必先求 f(3)、(2)、f(1) ,… ,反过来说,知道 f(1) ,可以推出 f(2) ,知道 f(2)、f(1) ,可以推出 f(3) ,知道 f(3)、(2)、f(1) ,可以推出 f(4) ,知道 f(4)、f(3)、(2)、f(1) ,可以推出 f(5) 。
基于上述分析,我们可以将递归过程转为递推过程,形成标准的动态规划解。代码如下:

public boolean wordBreak(String s, Set<String> wordSet) {
    //dp[i]表示s[i...n-1]能否拆分
    boolean[] dp = new boolean[s.length() + 1];
    dp[s.length()] = true;
    //i为子串起点
    for (int i = s.length() - 1; i >= 0; i--) {
        //j为子串终点,j+1为剩余串起点
        for (int j = i; j < s.length(); j++) {
            //若s[i...j]能在字典找到,判断s[j+1...n-1]能否拆分
            if (wordSet.contains(s.substring(i, j + 1))) {
                if (dp[j + 1]) {
                    dp[i] = true;
                    break;
                }
            }
        }
    }
    return dp[0];
}

函数内两层 for 循环,每层最大长度为 n ,故时间复杂度为 O(n^2) ,与解法2一致,所以本质上,记忆搜索与动态规划两种解法等价,但是动态规划避免了递归,所以解决了栈溢出的问题。至此,我们得到一个较为理想的解法,时间复杂度合理,没有栈溢出风险。这里我省略了空间复杂度的分析,主要是因为三种解法空间复杂度一致,都是 O(n) 。

总结

通过本题目的一个优化过程,可以梳理出暴力递归到动态规划的一般优化路径。后续我们在遇到其他问题的时候,如果不能马上想到较好的解法,不妨尝试使用这种方式,先暴力递归强行破解,再分析重复过程,通过记忆搜索避免重复计算,从记忆表中分析各子问题解的相互关系,得出递推方程,得到动态规划的解法。

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-06-26 17:03:41  更:2022-06-26 17:04:03 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 23:49:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码