| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 数据结构与算法 -> Simhash算法及python实现 -> 正文阅读 |
|
[数据结构与算法]Simhash算法及python实现 |
1. 为什么需要Simhash?传统相似度算法:文本相似度的计算,一般使用向量空间模型(VSM),先对文本分词,提取特征,根据特征建立文本向量,把文本之间相似度的计算转化为特征向量距离的计算,如欧式距离、余弦夹角等。 缺点:大数据情况下复杂度会很高。 Simhash应用场景:计算大规模文本相似度,实现海量文本信息去重。 Simhash算法原理:通过hash值比较相似度,通过两个字符串计算出的hash值,进行异或操作,然后得到相差的个数,数字越大则差异越大。 2. 文章关键词特征提取算法TD-IDF词频(TF):一个词语在整篇文章中出现的次数与词语总个数之比; 逆向词频(IDF):一个词语,在所有文章中出现的频率都非常高,这个词语不具有代表性,就可以降低其作用,也就是赋予其较小的权值。 ??????? 分子代表文章总数,分母表示该词语在这些文章出现的篇数。一般会采取分母加一的方法,防止分母为0的情况出现,在这个比值之后取对数,就是IDF了。 ??????? 最终用tf*idf得到一个词语的权重,进而计算一篇文章的关键词。然后根据每篇文章对比其关键词的方法来对文章进行去重。simhash算法对效率和性能进行平衡,既可以很少的对比(关键词不能取太多),又能有好的代表性(关键词不能过少)。 3. Simhash原理??????? Simhash是一种局部敏感hash。即假定A、B具有一定的相似性,在hash之后,仍然能保持这种相似性,就称之为局部敏感hash。 ??????? 得到一篇文章关键词集合,通过hash的方法把关键词集合hash成一串二进制,直接对比二进制数,其相似性就是两篇文档的相似性,在查看相似性时采用海明距离,即在对比二进制的时候,看其有多少位不同,就称海明距离为多少。 ??????? 将文章simhash得到一串64位的二进制,根据经验一般取海明距离为3作为阈值,即在64位二进制中,只要有三位以内不同,就可以认为两个文档是相似的,这里的阈值也可以根据自己的需求来设置。也就是把一个文档hash之后得到一串二进制数的算法,称这个hash为simhash。 simhash具体实现步骤如下:
Simhash整体流程图如下: ?4. Simhash的不足??????? 完全无关的文本正好对应成了相同的simhash,精确度并不是很高,而且simhash更适用于较长的文本,但是在大规模语料进行去重时,simhash的计算速度优势还是很不错的。 5. Simhash算法实现
测试
|
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/25 23:34:56- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |