IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 单调栈-42. 接雨水 -> 正文阅读

[数据结构与算法]单调栈-42. 接雨水

单调栈-42. 接雨水

1.题目

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

在这里插入图片描述

示例 1:

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 

示例 2:

输入:height = [4,2,0,3,2,5]
输出:9

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/trapping-rain-water

2.解题思路

共有是三种方法解决:

方法一:双指针法

请添加图片描述

然后,当前列的雨水高度等于,min(LH,RH)-当前列高度。

特殊情况:第一列和最后以列不操作。

方法二:动态规划

其实是对双指针法的一种优化,因为在使用双指针法的时候,发现,在求每列的左右最大值的时候,存在着重复的计算,如果利用动态规划的方法记录。

即从左向右遍历:maxLeft[i] = max(height[i], maxLeft[i - 1]);

从右向左遍历:maxRight[i] = max(height[i], maxRight[i + 1]);

方法三:单调栈

请添加图片描述

分为三种情况:

(1)如果当前遍历的元素(柱子)高度小于栈顶元素的高度,就把这个元素加入栈中,因为栈里本来就要保持从小到大的顺序(从栈头到栈底)。

(2)如果当前遍历的元素(柱子)高度等于栈顶元素的高度,要跟更新栈顶元素,因为遇到相相同高度的柱子,需要使用最右边的柱子来计算宽度。

(3)如果当前遍历的元素(柱子)高度大于栈顶元素的高度,此时就出现凹槽了(这种情况会出现雨水)

其实质就是:栈顶和栈顶的下一个元素以及要入栈的三个元素来接水!

请添加图片描述

凹槽的高度:int h = min(height[st.top()], height[i]) - height[mid];

凹槽的宽度:int w = i - st.top() - 1 ;

凹槽的体积:h*w

3.代码

方法一:双指针法(非最优)

public int trap(int[] height) {
        int sum = 0;
        for (int i = 0; i < height.length; i++) {
            // 第一个柱子和最后一个柱子不接雨水
            if (i==0 || i== height.length - 1) continue;
            
            int rHeight = height[i]; // 记录右边柱子的最高高度
            int lHeight = height[i]; // 记录左边柱子的最高高度
            for (int r = i+1; r < height.length; r++) {
                if (height[r] > rHeight) rHeight = height[r];
            }
            for (int l = i-1; l >= 0; l--) {
                if(height[l] > lHeight) lHeight = height[l];
            }
            int h = Math.min(lHeight, rHeight) - height[i];
            if (h > 0) sum += h;
        }
        return sum;

    }

方法二:动态规划

public int trap(int[] height) {
        int length = height.length;
        if (length <= 2) return 0;
        int[] maxLeft = new int[length];
        int[] maxRight = new int[length];
        
        // 记录每个柱子左边柱子最大高度
        maxLeft[0] = height[0];
        for (int i = 1; i< length; i++) maxLeft[i] = Math.max(height[i], maxLeft[i-1]);
        
        // 记录每个柱子右边柱子最大高度
        maxRight[length - 1] = height[length - 1];
        for(int i = length - 2; i >= 0; i--) maxRight[i] = Math.max(height[i], maxRight[i+1]);
        
        // 求和
        int sum = 0;
        for (int i = 0; i < length; i++) {
            int count = Math.min(maxLeft[i], maxRight[i]) - height[i];
            if (count > 0) sum += count;
        }
        return sum;
    }

方法三:单调栈法

public int trap(int[] height){
        int size = height.length;

        if (size <= 2) return 0;
        
        // in the stack, we push the index of array
        // using height[] to access the real height
        Stack<Integer> stack = new Stack<Integer>();
        stack.push(0);

        int sum = 0;
        for (int index = 1; index < size; index++){
            int stackTop = stack.peek();
            if (height[index] < height[stackTop]){
                stack.push(index);
            }else if (height[index] == height[stackTop]){
                // 因为相等的相邻墙,左边一个是不可能存放雨水的,所以pop左边的index, push当前的index
                stack.pop();
                stack.push(index);
            }else{
                //pop up all lower value
                int heightAtIdx = height[index];
                while (!stack.isEmpty() && (heightAtIdx > height[stackTop])){
                    int mid = stack.pop();
                    
                    if (!stack.isEmpty()){
                        int left = stack.peek();

                        int h = Math.min(height[left], height[index]) - height[mid];
                        int w = index - left - 1;
                        int hold = h * w;
                        if (hold > 0) sum += hold;
                        stackTop = stack.peek();
                    }
                }
                stack.push(index);
            }
        }
        
        return sum;
    }

4.性能

方法一:双指针(非最优)

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(l)

方法二:动态规划

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

方法三:单调栈

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-07-03 11:03:35  更:2022-07-03 11:04:55 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 23:36:43-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码