IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 二叉查找树(二)- C++实现 -> 正文阅读

[数据结构与算法]二叉查找树(二)- C++实现

上一章介绍了"二叉查找树的相关理论知识,并通过C语言实现了二叉查找树"。这一章给出二叉查找树的C++版本。这里不再对树的相关概念进行介绍,若遇到不明白的概念,可以在上一章查找。

目录
1.?二叉树查找树
2.?二叉查找树的C++实现
3.?二叉查找树的C++实现(完整源码)
4.?二叉查找树的C++测试程序

转载请注明出处:二叉查找树(二)之 C++的实现 - 如果天空不死 - 博客园


更多内容:?数据结构与算法系列 目录?

(01)?二叉查找树(一)之 图文解析 和 C语言的实现
(02)?二叉查找树(二)之 C++的实现
(03)?二叉查找树(三)之 Java的实现

二叉查找树简介

二叉查找树(Binary Search Tree),又被称为二叉搜索树。
它是特殊的二叉树:对于二叉树,假设x为二叉树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。那么,这棵树就是二叉查找树。如下图所示:

在二叉查找树中:
(01) 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(02) 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(03) 任意节点的左、右子树也分别为二叉查找树。
(04) 没有键值相等的节点(no duplicate nodes)。

二叉查找树的C++实现

1. 节点和二叉查找树的定义

1.1 二叉查找树节点

template <class T>
class BSTNode{
    public:
        T key;            // 关键字(键值)
        BSTNode *left;    // 左孩子
        BSTNode *right;    // 右孩子
        BSTNode *parent;// 父结点

        BSTNode(T value, BSTNode *p, BSTNode *l, BSTNode *r):
            key(value),parent(),left(l),right(r) {}
};

BSTNode是二叉查找树的节点,它包含二叉查找树的几个基本信息:
(01) key -- 它是关键字,是用来对二叉查找树的节点进行排序的。
(02) left -- 它指向当前节点的左孩子。
(03) right -- 它指向当前节点的右孩子。
(04) parent -- 它指向当前节点的父结点。

1.2 二叉树操作

template <class T>
class BSTree {
    private:
        BSTNode<T> *mRoot;    // 根结点

    public:
        BSTree();
        ~BSTree();

        // 前序遍历"二叉树"
        void preOrder();
        // 中序遍历"二叉树"
        void inOrder();
        // 后序遍历"二叉树"
        void postOrder();

        // (递归实现)查找"二叉树"中键值为key的节点
        BSTNode<T>* search(T key);
        // (非递归实现)查找"二叉树"中键值为key的节点
        BSTNode<T>* iterativeSearch(T key);

        // 查找最小结点:返回最小结点的键值。
        T minimum();
        // 查找最大结点:返回最大结点的键值。
        T maximum();

        // 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
        BSTNode<T>* successor(BSTNode<T> *x);
        // 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
        BSTNode<T>* predecessor(BSTNode<T> *x);

        // 将结点(key为节点键值)插入到二叉树中
        void insert(T key);

        // 删除结点(key为节点键值)
        void remove(T key);

        // 销毁二叉树
        void destroy();

        // 打印二叉树
        void print();
    private:
        // 前序遍历"二叉树"
        void preOrder(BSTNode<T>* tree) const;
        // 中序遍历"二叉树"
        void inOrder(BSTNode<T>* tree) const;
        // 后序遍历"二叉树"
        void postOrder(BSTNode<T>* tree) const;

        // (递归实现)查找"二叉树x"中键值为key的节点
        BSTNode<T>* search(BSTNode<T>* x, T key) const;
        // (非递归实现)查找"二叉树x"中键值为key的节点
        BSTNode<T>* iterativeSearch(BSTNode<T>* x, T key) const;

        // 查找最小结点:返回tree为根结点的二叉树的最小结点。
        BSTNode<T>* minimum(BSTNode<T>* tree);
        // 查找最大结点:返回tree为根结点的二叉树的最大结点。
        BSTNode<T>* maximum(BSTNode<T>* tree);

        // 将结点(z)插入到二叉树(tree)中
        void insert(BSTNode<T>* &tree, BSTNode<T>* z);

        // 删除二叉树(tree)中的结点(z),并返回被删除的结点
        BSTNode<T>* remove(BSTNode<T>* &tree, BSTNode<T> *z);

        // 销毁二叉树
        void destroy(BSTNode<T>* &tree);

        // 打印二叉树
        void print(BSTNode<T>* tree, T key, int direction);
};

BSTree是二叉树。它包含二叉查找树的根节点和二叉查找树的操作。二叉查找树的操作中有许多重载函数,例如insert()函数,其中一个是内部接口,另一个是提供给外部的接口。

2 遍历

这里讲解前序遍历、中序遍历、后序遍历3种方式。

2.1 前序遍历
若二叉树非空,则执行以下操作:
(01) 访问根结点;
(02) 先序遍历左子树;
(03) 先序遍历右子树。

前序遍历代码

template <class T>
void BSTree<T>::preOrder(BSTNode<T>* tree) const
{
    if(tree != NULL)
    {
        cout<< tree->key << " " ;
        preOrder(tree->left);
        preOrder(tree->right);
    }
}

template <class T>
void BSTree<T>::preOrder() 
{
    preOrder(mRoot);
}

2.2 中序遍历

若二叉树非空,则执行以下操作:
(01) 中序遍历左子树;
(02) 访问根结点;
(03) 中序遍历右子树。

中序遍历代码

template <class T>
void BSTree<T>::inOrder(BSTNode<T>* tree) const
{
    if(tree != NULL)
    {
        inOrder(tree->left);
        cout<< tree->key << " " ;
        inOrder(tree->right);
    }
}

template <class T>
void BSTree<T>::inOrder() 
{
    inOrder(mRoot);
}

2.3 后序遍历

若二叉树非空,则执行以下操作:
(01) 后序遍历左子树;
(02) 后序遍历右子树;
(03) 访问根结点。

后序遍历代码

template <class T>
void BSTree<T>::postOrder(BSTNode<T>* tree) const
{
    if(tree != NULL)
    {
        postOrder(tree->left);
        postOrder(tree->right);
        cout<< tree->key << " " ;
    }
}

template <class T>
void BSTree<T>::postOrder() 
{
    postOrder(mRoot);
}

看看下面这颗树的各种遍历方式:

对于上面的二叉树而言,
(01) 前序遍历结果:?3 1 2 5 4 6
(02) 中序遍历结果:?1 2 3 4 5 6?
(03) 后序遍历结果:?2 1 4 6 5 3

3. 查找

递归版本的代码

template <class T>
BSTNode<T>* BSTree<T>::search(BSTNode<T>* x, T key) const
{
    if (x==NULL || x->key==key)
        return x;

    if (key < x->key)
        return search(x->left, key);
    else
        return search(x->right, key);
}

template <class T>
BSTNode<T>* BSTree<T>::search(T key) 
{
    search(mRoot, key);
}

非递归版本的代码

template <class T>
BSTNode<T>* BSTree<T>::iterativeSearch(BSTNode<T>* x, T key) const
{
    while ((x!=NULL) && (x->key!=key))
    {
        if (key < x->key)
            x = x->left;
        else
            x = x->right;
    }

    return x;
}

template <class T>
BSTNode<T>* BSTree<T>::iterativeSearch(T key)
{
    iterativeSearch(mRoot, key);
}


4. 最大值和最小值

查找最大值的代码

template <class T>
BSTNode<T>* BSTree<T>::maximum(BSTNode<T>* tree)
{
    if (tree == NULL)
        return NULL;

    while(tree->right != NULL)
        tree = tree->right;
    return tree;
}

template <class T>
T BSTree<T>::maximum()
{
    BSTNode<T> *p = maximum(mRoot);
    if (p != NULL)
        return p->key;

    return (T)NULL;
}

查找最小值的代码

template <class T>
BSTNode<T>* BSTree<T>::minimum(BSTNode<T>* tree)
{
    if (tree == NULL)
        return NULL;

    while(tree->left != NULL)
        tree = tree->left;
    return tree;
}

template <class T>
T BSTree<T>::minimum()
{
    BSTNode<T> *p = minimum(mRoot);
    if (p != NULL)
        return p->key;

    return (T)NULL;
}

5. 前驱和后继

节点的前驱:是该节点的左子树中的最大节点。
节点的后继:是该节点的右子树中的最小节点。

查找前驱节点的代码

/* 
 * 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
 */
template <class T>
BSTNode<T>* BSTree<T>::predecessor(BSTNode<T> *x)
{
    // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
    if (x->left != NULL)
        return maximum(x->left);

    // 如果x没有左孩子。则x有以下两种可能:
    // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
    // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
    BSTNode<T>* y = x->parent;
    while ((y!=NULL) && (x==y->left))
    {
        x = y;
        y = y->parent;
    }

    return y;
}

查找后继节点的代码

/* 
 * 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
 */
template <class T>
BSTNode<T>* BSTree<T>::successor(BSTNode<T> *x)
{
    // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
    if (x->right != NULL)
        return minimum(x->right);

    // 如果x没有右孩子。则x有以下两种可能:
    // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
    // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
    BSTNode<T>* y = x->parent;
    while ((y!=NULL) && (x==y->right))
    {
        x = y;
        y = y->parent;
    }

    return y;
}


6. 插入

插入节点的代码

/* 
 * 将结点插入到二叉树中
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     z 插入的结点
 */
template <class T>
void BSTree<T>::insert(BSTNode<T>* &tree, BSTNode<T>* z)
{
    BSTNode<T> *y = NULL;
    BSTNode<T> *x = tree;

    // 查找z的插入位置
    while (x != NULL)
    {
        y = x;
        if (z->key < x->key)
            x = x->left;
        else
            x = x->right;
    }

    z->parent = y;
    if (y==NULL)
        tree = z;
    else if (z->key < y->key)
        y->left = z;
    else
        y->right = z;
}

/* 
 * 将结点(key为节点键值)插入到二叉树中
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     key 插入结点的键值
 */
template <class T>
void BSTree<T>::insert(T key)
{
    BSTNode<T> *z=NULL;

    // 如果新建结点失败,则返回。
    if ((z=new BSTNode<T>(key,NULL,NULL,NULL)) == NULL)
        return ;

    insert(mRoot, z);
}

注:本文实现的二叉查找树是允许插入相同键值的节点的。若想禁止二叉查找树中插入相同键值的节点,可以参考"二叉查找树(一)之 图文解析 和 C语言的实现"中的插入函数进行修改。

7. 删除

删除节点的代码

/* 
 * 删除结点(z),并返回被删除的结点
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     z 删除的结点
 */
template <class T>
BSTNode<T>* BSTree<T>::remove(BSTNode<T>* &tree, BSTNode<T> *z)
{
    BSTNode<T> *x=NULL;
    BSTNode<T> *y=NULL;

    if ((z->left == NULL) || (z->right == NULL) )
        y = z;
    else
        y = successor(z);

    if (y->left != NULL)
        x = y->left;
    else
        x = y->right;

    if (x != NULL)
        x->parent = y->parent;

    if (y->parent == NULL)
        tree = x;
    else if (y == y->parent->left)
        y->parent->left = x;
    else
        y->parent->right = x;

    if (y != z) 
        z->key = y->key;

    return y;
}

/* 
 * 删除结点(z),并返回被删除的结点
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     z 删除的结点
 */
template <class T>
void BSTree<T>::remove(T key)
{
    BSTNode<T> *z, *node; 

    if ((z = search(mRoot, key)) != NULL)
        if ( (node = remove(mRoot, z)) != NULL)
            delete node;
}

8. 打印

打印二叉查找树的代码

/*
 * 打印"二叉查找树"
 *
 * key        -- 节点的键值 
 * direction  --  0,表示该节点是根节点;
 *               -1,表示该节点是它的父结点的左孩子;
 *                1,表示该节点是它的父结点的右孩子。
 */
template <class T>
void BSTree<T>::print(BSTNode<T>* tree, T key, int direction)
{
    if(tree != NULL)
    {
        if(direction==0)    // tree是根节点
            cout << setw(2) << tree->key << " is root" << endl;
        else                // tree是分支节点
            cout << setw(2) << tree->key << " is " << setw(2) << key << "'s "  << setw(12) << (direction==1?"right child" : "left child") << endl;

        print(tree->left, tree->key, -1);
        print(tree->right,tree->key,  1);
    }
}

template <class T>
void BSTree<T>::print()
{
    if (mRoot != NULL)
        print(mRoot, mRoot->key, 0);
}

9. 销毁

销毁二叉查找树的代码

/*
 * 销毁二叉树
 */
template <class T>
void BSTree<T>::destroy(BSTNode<T>* &tree)
{
    if (tree==NULL)
        return ;

    if (tree->left != NULL)
        return destroy(tree->left);
    if (tree->right != NULL)
        return destroy(tree->right);

    delete tree;
    tree=NULL;
}

template <class T>
void BSTree<T>::destroy()
{
    destroy(mRoot);
}

二叉查找树的C++实现(完整源码)

二叉查找树的C++实现文件(BSTree.h)

/**
 * C++ 语言: 二叉查找树
 *
 * @author skywang
 * @date 2013/11/07
 */

#ifndef _BINARY_SEARCH_TREE_HPP_
#define _BINARY_SEARCH_TREE_HPP_

#include <iomanip>
#include <iostream>
using namespace std;

template <class T>
class BSTNode{
    public:
        T key;            // 关键字(键值)
        BSTNode *left;    // 左孩子
        BSTNode *right;    // 右孩子
        BSTNode *parent;// 父结点

        BSTNode(T value, BSTNode *p, BSTNode *l, BSTNode *r):
            key(value),parent(),left(l),right(r) {}
};

template <class T>
class BSTree {
    private:
        BSTNode<T> *mRoot;    // 根结点

    public:
        BSTree();
        ~BSTree();

        // 前序遍历"二叉树"
        void preOrder();
        // 中序遍历"二叉树"
        void inOrder();
        // 后序遍历"二叉树"
        void postOrder();

        // (递归实现)查找"二叉树"中键值为key的节点
        BSTNode<T>* search(T key);
        // (非递归实现)查找"二叉树"中键值为key的节点
        BSTNode<T>* iterativeSearch(T key);

        // 查找最小结点:返回最小结点的键值。
        T minimum();
        // 查找最大结点:返回最大结点的键值。
        T maximum();

        // 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
        BSTNode<T>* successor(BSTNode<T> *x);
        // 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
        BSTNode<T>* predecessor(BSTNode<T> *x);

        // 将结点(key为节点键值)插入到二叉树中
        void insert(T key);

        // 删除结点(key为节点键值)
        void remove(T key);

        // 销毁二叉树
        void destroy();

        // 打印二叉树
        void print();
    private:
        // 前序遍历"二叉树"
        void preOrder(BSTNode<T>* tree) const;
        // 中序遍历"二叉树"
        void inOrder(BSTNode<T>* tree) const;
        // 后序遍历"二叉树"
        void postOrder(BSTNode<T>* tree) const;

        // (递归实现)查找"二叉树x"中键值为key的节点
        BSTNode<T>* search(BSTNode<T>* x, T key) const;
        // (非递归实现)查找"二叉树x"中键值为key的节点
        BSTNode<T>* iterativeSearch(BSTNode<T>* x, T key) const;

        // 查找最小结点:返回tree为根结点的二叉树的最小结点。
        BSTNode<T>* minimum(BSTNode<T>* tree);
        // 查找最大结点:返回tree为根结点的二叉树的最大结点。
        BSTNode<T>* maximum(BSTNode<T>* tree);

        // 将结点(z)插入到二叉树(tree)中
        void insert(BSTNode<T>* &tree, BSTNode<T>* z);

        // 删除二叉树(tree)中的结点(z),并返回被删除的结点
        BSTNode<T>* remove(BSTNode<T>* &tree, BSTNode<T> *z);

        // 销毁二叉树
        void destroy(BSTNode<T>* &tree);

        // 打印二叉树
        void print(BSTNode<T>* tree, T key, int direction);
};

/*
 * 构造函数
 */
template <class T>
BSTree<T>::BSTree():mRoot(NULL)
{
}

/*
 * 析构函数
 */
template <class T>
BSTree<T>::~BSTree()
{
    destroy();
}

/*
 * 前序遍历"二叉树"
 */
template <class T>
void BSTree<T>::preOrder(BSTNode<T>* tree) const
{
    if(tree != NULL)
    {
        cout<< tree->key << " " ;
        preOrder(tree->left);
        preOrder(tree->right);
    }
}

template <class T>
void BSTree<T>::preOrder()
{
    preOrder(mRoot);
}

/*
 * 中序遍历"二叉树"
 */
template <class T>
void BSTree<T>::inOrder(BSTNode<T>* tree) const
{
    if(tree != NULL)
    {
        inOrder(tree->left);
        cout<< tree->key << " " ;
        inOrder(tree->right);
    }
}

template <class T>
void BSTree<T>::inOrder()
{
    inOrder(mRoot);
}

/*
 * 后序遍历"二叉树"
 */
template <class T>
void BSTree<T>::postOrder(BSTNode<T>* tree) const
{
    if(tree != NULL)
    {
        postOrder(tree->left);
        postOrder(tree->right);
        cout<< tree->key << " " ;
    }
}

template <class T>
void BSTree<T>::postOrder()
{
    postOrder(mRoot);
}

/*
 * (递归实现)查找"二叉树x"中键值为key的节点
 */
template <class T>
BSTNode<T>* BSTree<T>::search(BSTNode<T>* x, T key) const
{
    if (x==NULL || x->key==key)
        return x;

    if (key < x->key)
        return search(x->left, key);
    else
        return search(x->right, key);
}

template <class T>
BSTNode<T>* BSTree<T>::search(T key)
{
    search(mRoot, key);
}

/*
 * (非递归实现)查找"二叉树x"中键值为key的节点
 */
template <class T>
BSTNode<T>* BSTree<T>::iterativeSearch(BSTNode<T>* x, T key) const
{
    while ((x!=NULL) && (x->key!=key))
    {
        if (key < x->key)
            x = x->left;
        else
            x = x->right;
    }

    return x;
}

template <class T>
BSTNode<T>* BSTree<T>::iterativeSearch(T key)
{
    iterativeSearch(mRoot, key);
}

/*
 * 查找最小结点:返回tree为根结点的二叉树的最小结点。
 */
template <class T>
BSTNode<T>* BSTree<T>::minimum(BSTNode<T>* tree)
{
    if (tree == NULL)
        return NULL;

    while(tree->left != NULL)
        tree = tree->left;
    return tree;
}

template <class T>
T BSTree<T>::minimum()
{
    BSTNode<T> *p = minimum(mRoot);
    if (p != NULL)
        return p->key;

    return (T)NULL;
}

/*
 * 查找最大结点:返回tree为根结点的二叉树的最大结点。
 */
template <class T>
BSTNode<T>* BSTree<T>::maximum(BSTNode<T>* tree)
{
    if (tree == NULL)
        return NULL;

    while(tree->right != NULL)
        tree = tree->right;
    return tree;
}

template <class T>
T BSTree<T>::maximum()
{
    BSTNode<T> *p = maximum(mRoot);
    if (p != NULL)
        return p->key;

    return (T)NULL;
}

/*
 * 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
 */
template <class T>
BSTNode<T>* BSTree<T>::successor(BSTNode<T> *x)
{
    // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
    if (x->right != NULL)
        return minimum(x->right);

    // 如果x没有右孩子。则x有以下两种可能:
    // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
    // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
    BSTNode<T>* y = x->parent;
    while ((y!=NULL) && (x==y->right))
    {
        x = y;
        y = y->parent;
    }

    return y;
}

/*
 * 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
 */
template <class T>
BSTNode<T>* BSTree<T>::predecessor(BSTNode<T> *x)
{
    // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
    if (x->left != NULL)
        return maximum(x->left);

    // 如果x没有左孩子。则x有以下两种可能:
    // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
    // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
    BSTNode<T>* y = x->parent;
    while ((y!=NULL) && (x==y->left))
    {
        x = y;
        y = y->parent;
    }

    return y;
}

/*
 * 将结点插入到二叉树中
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     z 插入的结点
 */
template <class T>
void BSTree<T>::insert(BSTNode<T>* &tree, BSTNode<T>* z)
{
    BSTNode<T> *y = NULL;
    BSTNode<T> *x = tree;

    // 查找z的插入位置
    while (x != NULL)
    {
        y = x;
        if (z->key < x->key)
            x = x->left;
        else
            x = x->right;
    }

    z->parent = y;
    if (y==NULL)
        tree = z;
    else if (z->key < y->key)
        y->left = z;
    else
        y->right = z;
}

/*
 * 将结点(key为节点键值)插入到二叉树中
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     key 插入结点的键值
 */
template <class T>
void BSTree<T>::insert(T key)
{
    BSTNode<T> *z=NULL;

    // 如果新建结点失败,则返回。
    if ((z=new BSTNode<T>(key,NULL,NULL,NULL)) == NULL)
        return ;

    insert(mRoot, z);
}

/*
 * 删除结点(z),并返回被删除的结点
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     z 删除的结点
 */
template <class T>
BSTNode<T>* BSTree<T>::remove(BSTNode<T>* &tree, BSTNode<T> *z)
{
    BSTNode<T> *x=NULL;
    BSTNode<T> *y=NULL;

    if ((z->left == NULL) || (z->right == NULL) )
        y = z;
    else
        y = successor(z);

    if (y->left != NULL)
        x = y->left;
    else
        x = y->right;

    if (x != NULL)
        x->parent = y->parent;

    if (y->parent == NULL)
        tree = x;
    else if (y == y->parent->left)
        y->parent->left = x;
    else
        y->parent->right = x;

    if (y != z)
        z->key = y->key;

    return y;
}

/*
 * 删除结点(z),并返回被删除的结点
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     z 删除的结点
 */
template <class T>
void BSTree<T>::remove(T key)
{
    BSTNode<T> *z, *node;

    if ((z = search(mRoot, key)) != NULL)
        if ( (node = remove(mRoot, z)) != NULL)
            delete node;
}

/*
 * 销毁二叉树
 */
template <class T>
void BSTree<T>::destroy(BSTNode<T>* &tree)
{
    if (tree==NULL)
        return ;

    if (tree->left != NULL)
        return destroy(tree->left);
    if (tree->right != NULL)
        return destroy(tree->right);

    delete tree;
    tree=NULL;
}

template <class T>
void BSTree<T>::destroy()
{
    destroy(mRoot);
}

/*
 * 打印"二叉查找树"
 *
 * key        -- 节点的键值
 * direction  --  0,表示该节点是根节点;
 *               -1,表示该节点是它的父结点的左孩子;
 *                1,表示该节点是它的父结点的右孩子。
 */
template <class T>
void BSTree<T>::print(BSTNode<T>* tree, T key, int direction)
{
    if(tree != NULL)
    {
        if(direction==0)    // tree是根节点
            cout << setw(2) << tree->key << " is root" << endl;
        else                // tree是分支节点
            cout << setw(2) << tree->key << " is " << setw(2) << key << "'s "  << setw(12) << (direction==1?"right child" : "left child") << endl;

        print(tree->left, tree->key, -1);
        print(tree->right,tree->key,  1);
    }
}

template <class T>
void BSTree<T>::print()
{
    if (mRoot != NULL)
        print(mRoot, mRoot->key, 0);
}

#endif

二叉查找树的C++测试程序(BSTreeTest.cpp)

/**
 * C++ 语言: 二叉查找树
 *
 * @author skywang
 * @date 2013/11/07
 */

#include <iostream>
#include "BSTree.h"
using namespace std;

static int arr[]= {1,5,4,3,2,6};
#define TBL_SIZE(a) ( (sizeof(a)) / (sizeof(a[0])) )

int main()
{
    int i, ilen;
    BSTree<int>* tree=new BSTree<int>();

    cout << "== 依次添加: ";
    ilen = TBL_SIZE(arr);
    for(i=0; i<ilen; i++)
    {
        cout << arr[i] <<" ";
        tree->insert(arr[i]);
    }

    cout << "\n== 前序遍历: ";
    tree->preOrder();

    cout << "\n== 中序遍历: ";
    tree->inOrder();

    cout << "\n== 后序遍历: ";
    tree->postOrder();
    cout << endl;

    cout << "== 最小值: " << tree->minimum() << endl;
    cout << "== 最大值: " << tree->maximum() << endl;
    cout << "== 树的详细信息: " << endl;
    tree->print();

    cout << "\n== 删除根节点: " << arr[3];
    tree->remove(arr[3]);

    cout << "\n== 中序遍历: ";
    tree->inOrder();
    cout << endl;

    // 销毁二叉树
    tree->destroy();

    return 0;
}

关于二叉查找树的C++实现有两点需要补充说明的:
第1点:采用了STL模板。因此,二叉查找树支持任意数据类型。
第2点:将二叉查找树的"声明"和"实现"都位于BSTree.h中。这是因为,在二叉查找树的实现采用了模板;而C++编译器不支持对模板的分离式编译!

二叉查找树的C++测试程序

上面的BSTreeTest.c是二叉查找树树的测试程序,运行结果如下:

== 依次添加: 1 5 4 3 2 6 
== 前序遍历: 1 5 4 3 2 6 
== 中序遍历: 1 2 3 4 5 6 
== 后序遍历: 2 3 4 6 5 1 
== 最小值: 1
== 最大值: 6
== 树的详细信息: 
 1 is root
 5 is  1's  right child
 4 is  5's   left child
 3 is  4's   left child
 2 is  3's   left child
 6 is  5's  right child

== 删除根节点: 3
== 中序遍历: 1 2 4 5 6 

下面对测试程序的流程进行分析!

(01) 新建"二叉查找树"root。


(02) 向二叉查找树中依次插入1,5,4,3,2,6 。如下图所示:

(03) 遍历和查找
插入1,5,4,3,2,6之后,得到的二叉查找树如下:

前序遍历结果:?1 5 4 3 2 6
中序遍历结果:?1 2 3 4 5 6
后序遍历结果:?2 3 4 6 5 1
最小值是1,而最大值是6。

(04) 删除节点4。如下图所示:

(05) 重新遍历该二叉查找树。
中序遍历结果:?1 2 4 5 6

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-07-03 11:03:35  更:2022-07-03 11:07:19 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 23:49:42-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码