由于Hash索引数据结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B+Tree 索引需要从根节点到枝节点,最后才能访问到叶子节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B+Tree 索引。虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端。
- Hash 索引仅仅能满足”=”,”IN”和”<=>”查询,不能使用范围查询。
由于 Hash 索引比较的是 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤。 - Hash 索引无法进行数据的排序操作。
由于 Hash 索引中存放的是 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来进行排序运算; - Hash 索引不能利用部分索引键查询。
对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。 - Hash 索引在任何时候都不能避免表扫描。
前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。 - Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B+Tree索引高。
对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下
B+树索引和哈希索引的明显区别是:
如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;
如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;
同理,哈希索引也没办法利用索引完成排序,以及模糊查询(这种部分模糊查询,其实本质上也是范围查询);
哈希索引也不支持多列联合索引的最左匹配规则;
B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。
|