IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 简述哈希表 -> 正文阅读

[数据结构与算法]简述哈希表

哈希表的定义:根据设定的哈希函数 H(key) 和所选中的处理冲突的方法,将一组关键字映象到一个有限的、地址连续的地址集 (区间) 上,并以关键字在地址集中的“映像”作为相应记录在表中的存储位置,如此构造所得的查找表称之为“哈希表”。

在JDK1.6,JDK1.7中,HashMap采用数组+链表实现,即同一hash值的链表都存储在一个链表里。但是当位于一个桶中的元素较多,当hash值相等的元素较多时,通过key值依次查找的效率较低。

在JDK1.8中,HashMap采用位桶+链表+红黑树实现,当链表长度超过阈值时,将链表转换为红黑树,这样大大减少了查找时间。

哈希表的底层是数组+链表/红黑树的结构。

一 ,哈希表的核心成员

    默认初始容量(数组的默认大小):16,2的次方
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;

    默认的负载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    当map中存储数据达到了75%就会进行扩容

    链表扩容的边界,链表长度的阈值,当超过8时,会进行树化
    static final int TREEIFY_THRESHOLD = 8;
    当大于8以后就会进行扩容,将这8个数据进行平均分配
   
    红黑数转离链表边界,当树中只有6个或以下,转化为链表。
    static final int UNTREEIFY_THRESHOLD = 6;

?这张图就充分的说明了哈希表是如何的进行存储,下面就去介绍哈希表是如何进行存储数据的过程,以及为什么会出现红黑树的原因展开进行讲解。

二,从哈希表的结构上来说最重要的是数组,Node数组就是它的数组

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;//用来定位数组的索引位置
        final K key;// 存储到Map集合中的那个key
        V value;// 存储到Map集合中的那个value
        Node<K,V> next;//链表的下一个节点的地址

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

三,创建哈希表的三个构造方法

    
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

  
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

?? ? ? ? ? public HashMap();


?? ? ? ? ? public HashMap(int capacity); //指定数组的长度? ? ?

? ? ? ? ? ?public HashMap(int capacity,float loadFactor);//指定数组的长度和加载因子

? ? ? ? ? ?数组的实际长度是>=capacity,最接近2的次方的一个值

? ? ??? ???数组的索引值占有率>加载因子会扩容,loadFactor默认值是0.75


? ? ? ? ? ?loadFactor修改加载因子的

? ? 四,简述HashSet新增过程:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }


? ? ? ? ? ? ?1.计算新增元素的哈希值


? ?? ? ? ? ? 2.通过哈希值%数组长度,确定新增元素的在数组中的索引值位置


? ? ? ? ? ? ?3.如果该位置为空,则直接新增
? ? ? ? ? ? ? ? ??如果不为空,判断是否重复:
? ? ? ? ? ? ? ? ? 如果不重复:直接新增,挂到该索引值链表末尾处
? ? ? ? ? ? ? ? ? 如果重复:就不新增
?
? ? ? ? ? ? 判断是否重复的标准:哈希值是否相同 && (地址值是否相同 || equals是否相同)

??????

五,扩容

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

要明白这几个问题:

1.什么时候会扩容:
?? ? ? ? ? ? a.同一索引值下元素个数>8,并且数组长度<64
?? ? ? ? ? ? ?b.数组的索引值占有率>0.75
?

2.?扩容规则:
?? ? ? ? ? ?新数组容量 = 就数组容量<<1;

3.什么情况下会转红黑树:
?? ? ? ? ? ? ?同一索引值下元素个数>8,并且数组长度>=64.
?? ? ? ? ? ? ?会把"该索引值"下的元素转换为红黑树

??HashMap 和 HashSet区别
????????HashSet 底层就是基于 HashMap 实现的。
?

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-08-19 19:31:09  更:2022-08-19 19:34:43 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/28 18:29:09-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计