本期的内容是排序,这里的排序方法都是排升序,把特定条件反过来就是排降序
前言
我们前面已经学习了堆排序 ,接下来就来看看剩下的排序。并且了解每个排序的优缺点。 栈
插入排序
基本思想
把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为 止,得到一个新的有序序列 。
举个简单的例子:扑克牌
直接插入排序
当插入第i(i>=1 )个元素时,前面的array[0],array[1 ],…,array[i-1 ]已经排好序,此时用array[i]的排序码与 array[i-1 ],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移
简单的说就是如果排升序:插入数据小于前面的数据就把插入的数据放到前面,把大的数据调到后面去
代码如下:
void InsertSort(int* a, int n)
{
for (int i = 0; i < n - 1; ++i)
{
int end = i;
int tmp = a[end + 1];
while (end >= 0)
{
if (tmp < a[end])
{
a[end + 1] = a[end];
--end;
}
else
break;
}
a[end + 1] = tmp;
}
}
直接插入排序的特性总结:
1 . 元素集合越接近有序,直接插入排序算法的时间效率越高 2. 时间复杂度: O(N^2) 3. 空间复杂度: O(1 ),它是一种稳定的排序算法 4. 稳定性:稳定
希尔排序( 缩小增量排序 )
希尔排序是在直接插入排序的基础上进行的一系列优化
希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。
希尔排序的主要过程分两步:
1、预排序——目的:让数据接近有序 2、直接插入排序——目的:让数据有序
也就是说,希尔排序先进行预排序,这个过程要把数据大体上处理完成,最后使用直接插入排序就完成希尔排序
这里有一个关键变量:gap 。一般情况下,数据少,gap小;数据多,gap大
对于升序:
gap越大,大的数据越快的跳到后面,小的数据越快跳到前面,但是不是很接近有序 gap越小,跳的越慢,但是接近有序
gap的取值方法很多样,这就导致了许多希尔排序的时间复杂度并不是特别的精准,我们只需大概了解即可 预排序就是把数据间隔为gap的分为一组数据,然后进行插入排序
我们来看看图片: 可能有许多人对于上面的图片似懂非懂,其实简单一点就是: 从第一个数据开始,把每间隔gap个数据分为一组,一直到到间隔小于gap; 就再从第二个数据开始,每间隔gap个数据分为一组,一直到到间隔小于gap; 就再从第三个数据开始…依此类推下去
我们来看看希尔排序的代码:
void ShellSort(int* a, int n)
{
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;
for (int j = 0; j < gap; ++j)
{
for (int i = j; i < n - gap; i += gap)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (tmp < a[end])
{
a[end + gap] = a[end];
end -= gap;
}
else
break;
}
a[end + gap] = tmp;
}
}
}
}
关于希尔排序的时间复杂度因为种种原因算不出具体值,但是是接近O(N*logN)的
希尔排序的特性总结:
1 . 希尔排序是对直接插入排序的优化。 2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就 会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。 3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的 希尔排序的时间复杂度都不固定: 《数据结构(C语言版)》 — 严蔚敏 《数据结构-用面相对象方法与C++描述》 — 殷人昆
因为咋们的gap是按照Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,我们暂时就按照: 4. 稳定性:不稳定
选择排序
基本思想:
每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的 数据元素排完 。
直接选择排序
先说一下这个排序的缺点:时间复杂度永远为O(N^2),不管数据有没有序,选择排序的时间复杂度都不会变。由此可知这个排序与其他排序相比确实拉跨了点
在元素集合array[i]–array[n-1 ]中选择关键码最大(小)的数据元素若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换 在剩余的array[i]–array[n-2](array[i+1 ]–array[n-1 ])集合中,重复上述步骤,直到集合剩余1个元素
void ChoiceSort(int* a, int n)
{
for (int i = 0; i < n; ++i)
{
for (int j = i + 1; j < n; ++j)
{
if (a[i] > a[j])
Swap(&a[i], &a[j]);
}
}
}
直接选择排序的特性总结:
1 . 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用 2. 时间复杂度: O(N^2) 3. 空间复杂度: O(1 ) 4. 稳定性:不稳定
堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
因为我们之前讲过了,所以就不再过多介绍了
void Swap(int* n, int* m)
{
int tmp = *n;
*n = *m;
*m = tmp;
}
void Justdown(int* a, int size, int parent)
{
int midchild = parent * 2 + 1;
while (midchild < size)
{
if (midchild + 1 < size && a[midchild + 1] < a[midchild])
{
midchild++;
}
if (a[midchild] < a[parent])
{
Swap(&a[midchild], &a[parent]);
parent = midchild;
midchild = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
Justdown(a, n, i);
}
int i = 1;
while (i < n)
{
Swap(&a[0], &a[n - i]);
Justdown(a, n - i, 0);
++i;
}
}
堆排序最下面一层排序的调整次数(时间复杂度)是:N/2logN 倒数第二层的调整次数(时间复杂度)是:N/4logN 倒数第三层的调整次数(时间复杂度)是:N/8logN … 和起来的结果用大O渐进法就是:NlogN 这个就是堆排序的时间复杂度
交换排序
基本思想:
所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置, 交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。
冒泡排序
这个是我们的老朋友了
void BubbleSort(int* a, int n)
{
for (int i = 0; i < n - 1; i++)
{
int flag = 0;
for (int j = 0; j < n - i - 1; j++)
{
if (a[j + 1] < a[j])
{
Swap(&a[j], &a[j + 1]);
flag = 1;
}
}
if (flag == 0)
break;
}
}
冒泡排序的特性总结:
1 . 冒泡排序是一种非常容易理解的排序 2. 时间复杂度: O(N^2) 3. 空间复杂度: O(1 ) 4. 稳定性:稳定
快速排序(快排)
快速排序是Hoare于1 962年提出的一种二叉树结构的交换排序方法 基本思想:
任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
void QuickSort ( int array [ ] , int left, int right )
{
if( right - left <= 1)
return;
int div = partion (array, left, right ) ;
QuickSort (array, left, div) ;
QuickSort (array, div+1, right ) ;
}
上述为快速排序递归实现的主框架,发现与二叉树前序遍历规则非常像,同学们在写递归框架时可想想二叉 树前序遍历规则即可快速写出来,后序只需分析如何按照基准值来对区间中数据进行划分的方式即可。
将区间按照基准值划分为左右两半部分的常见方式(单趟排序的方法)有:
hoare版本
简单点来说:我们选中第一个或者最后一个数据为key,单趟排序之后,key左边都是比key小的数据,右边都是比key大的数据 如下图:
R从右边开始找小于key的数据,L从左边开始找比key大的数据,两个数据都找到之后直接交换,直到L和R相遇,将相遇的值与key的值交换
重要问题:相遇位置一定比key要小吗? 解决方案:R先走,找小。如果找不到就说明key就是最小值,否则肯定找的到比key小的值
同理,如果是右边数据为key,那么左边的L就要先走
单趟排序的价值
1、key的值所在位置就是正确的位置 2、key分开了区间,key左边的数据都是比key小的,右边的数据都是比key大的,[left,key-1] ,key ,[key+1,right] 这里key的位置是确定了,但是左右区间数据没有确定,所以用递归的方法来处理
代码:
int PartSort1(int* a, int left, int right)
{
int key = left;
while (left < right)
{
while (left < right && a[right] >= a[key])
{
--right;
}
while (left < right && a[left] <= a[key])
{
++left;
}
if (left < right)
Swap(&a[left], &a[right]);
}
mid = left;
Swap(&a[mid], &a[key]);
return mid;
}
单趟排序完之后,key值的位置就是确定的,那么[left,key-1]和 [key+1,right]两个区间内数据的位置没有确定,我们和二叉树一样使用递归的方法,对左右区间就行key值确定,直到找不到区间(比如下面的【2,1】就是不存在区间)就停止该次单趟排序
优化1
key取值的缺陷
key如果是中位数,那么就是左区间小,右区间大。但是,如果数据是有序或者接近有序的,那么key就是最大值、最小值或者接近最大值、接近最小值,这种情况下直接使用最左边或者最右边的数据key效率都很低。这个时候就要就行优化了,方法就是——三数取中
三数取中
从第一个值,中间值和最后一个值中,选出三个数据的中间值与key进行交换
这里三个数找中间值没有其他办法,只能两两比较
int GetMid(int* a, int left, int right)
{
int mid = left + (right - left) / 2;
if (a[left] > a[mid])
{
if (a[mid] > a[right])
return mid;
else if (a[left] < a[right])
return left;
else
return right;
}
else
{
if (a[mid] < a[right])
return mid;
else if (a[left] > a[right])
return left;
else
return right;
}
}
那么hoare单趟排序法也要加入一些代码
int PartSort1(int* a, int left, int right)
{
int mid = GetMid(a, left, right);
Swap(&a[mid], &a[left]);
int key = left;
while (left < right)
{
while (left < right && a[right] >= a[key])
{
--right;
}
while (left < right && a[left] <= a[key])
{
++left;
}
if (left < right)
Swap(&a[left], &a[right]);
}
mid = left;
Swap(&a[mid], &a[key]);
return mid;
}
优化2
小区间优化
当我们一次次递归确定key值后,如果左右区间都只剩下8个、9个或者10个值的时候再调用递归就有些浪费了,这个时候我们直接使用插入排序更好
if (right - left <= 8)
{
InsertSort(a + left, right - left + 1);
}
挖坑法
int PartSort2(int* a, int left, int right)
{
int mid = GetMid(a, left, right);
Swap(&a[mid], &a[left]);
int keyi = a[left];
int hole = left;
while (left < right)
{
while (left < right && a[right] >= keyi)
--right;
a[hole] = a[right];
hole = right;
while (left < right && a[left] <= keyi)
++left;
a[hole] = a[left];
hole = left;
}
a[hole] = keyi;
return hole;
}
前后指针法
cur先走,找比key小的值,找到之后++prev,看看prev等不等于cur,等于cur继续走,不等于就交换cur和prev的值,cur再继续走
int PartSort3(int* a, int left, int right)
{
int mid = GetMid(a, left, right);
Swap(&a[mid], &a[left]);
int key = left;
int cur = left + 1;
int prev = left;
while (cur <= right)
{
if (a[cur] < a[key])
{
++prev;
Swap(&a[cur], &a[prev]);
}
++cur;
}
Swap(&a[key], &a[prev]);
return prev;
}
快速排序(非递归)
这里要使用到数据结构——栈 在栈里面存放区间,进行确定key值
void QuickSortNonR(int* a, int left, int right)
{
ST p;
StackInit(&p);
StackPush(&p,left);
StackPush(&p, right);
while (!StackEmpty(&p))
{
int right2 = StackTop(&p);
StackPop(&p);
int left2 = StackTop(&p);
StackPop(&p);
int key = PartSort3(a, left2, right2);
if (key + 1 < right2)
{
StackPush(&p, key + 1);
StackPush(&p, right2);
}
if (left2 < right2 - 1)
{
StackPush(&p, left2);
StackPush(&p, key - 1);
}
}
StackDestory(&p);
}
快速排序的特性总结:
1 . 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序 2. 时间复杂度: O(N*logN) 3. 空间复杂度: O(logN) 4. 稳定性:不稳定
测试排序性能对比
这里的代码可以测试出每一个排序方法对相同数据进行排序的时间
每一个end-begin的结果就是该排序所花费的时间
void TestOP()
{
srand(time(0));
const int N = 10000000;
int* a1 = (int*)malloc(sizeof(int) * N);
int* a2 = (int*)malloc(sizeof(int) * N);
int* a3 = (int*)malloc(sizeof(int) * N);
int* a4 = (int*)malloc(sizeof(int) * N);
int* a5 = (int*)malloc(sizeof(int) * N);
int* a6 = (int*)malloc(sizeof(int) * N);
int* a7 = (int*)malloc(sizeof(int) * N);
for (int i = 0; i < N; ++i)
{
a1[i] = rand();
a2[i] = a1[i];
a3[i] = a1[i];
a4[i] = a1[i];
a5[i] = a1[i];
a6[i] = a1[i];
a7[i] = a1[i];
}
int begin1 = clock();
int end1 = clock();
int begin2 = clock();
ShellSort(a2, N);
int end2 = clock();
int begin3 = clock();
int end3 = clock();
int begin4 = clock();
HeapSort(a4, N);
int end4 = clock();
int begin5 = clock();
QuickSort(a5, 0, N - 1);
int end5 = clock();
int begin6 = clock();
int end6 = clock();
int begin7 = clock();
int end7 = clock();
printf("InsertSort:%d\n", end1 - begin1);
printf("ShellSort:%d\n", end2 - begin2);
printf("SelectSort:%d\n", end3 - begin3);
printf("HeapSort:%d\n", end4 - begin4);
printf("BubbleSort:%d\n", end7 - begin7);
printf("QuickSort:%d\n", end5 - begin5);
printf("MergeSort:%d\n", end6 - begin6);
free(a1);
free(a2);
free(a3);
free(a4);
free(a5);
free(a6);
free(a7);
}
全部代码
sort.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
void PrintSort(int* a, int n);
void InsertSort(int* a, int n);
void ShellSort(int* a, int n);
void HeapSort(int* a, int n);
void SelectSort(int* a, int n);
void BubbleSort(int* a, int n);
void QuickSort(int* a, int begin, int end);
void QuickSortNonR(int* a, int left, int right);
sort.c
#define _CRT_SECURE_NO_WARNINGS
#include"Sort.h"
#include"Stack.h"
void PrintSort(int* a, int n)
{
for (int i = 0; i < n; i++)
{
printf("%d ", a[i]);
}
printf("\n");
}
void InsertSort(int* a, int n)
{
for (int i = 0; i < n - 1; ++i)
{
int end = i;
int tmp = a[end + 1];
while (end >= 0)
{
if (tmp < a[end])
{
a[end + 1] = a[end];
--end;
}
else
break;
}
a[end + 1] = tmp;
}
}
void ShellSort(int* a, int n)
{
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;
for (int j = 0; j < gap; ++j)
{
for (int i = j; i < n - gap; i += gap)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (tmp < a[end])
{
a[end + gap] = a[end];
end -= gap;
}
else
break;
}
a[end + gap] = tmp;
}
}
}
}
void Swap(int* n, int* m)
{
int tmp = *n;
*n = *m;
*m = tmp;
}
void Justdown(int* a, int size, int parent)
{
int midchild = parent * 2 + 1;
while (midchild < size)
{
if (midchild + 1 < size && a[midchild + 1] < a[midchild])
{
midchild++;
}
if (a[midchild] < a[parent])
{
Swap(&a[midchild], &a[parent]);
parent = midchild;
midchild = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
Justdown(a, n, i);
}
int i = 1;
while (i < n)
{
Swap(&a[0], &a[n - i]);
Justdown(a, n - i, 0);
++i;
}
}
void SelectSort(int* a, int n)
{
for (int i = 0; i < n; ++i)
{
for (int j = i + 1; j < n; ++j)
{
if (a[i] > a[j])
Swap(&a[i], &a[j]);
}
}
}
void BubbleSort(int* a, int n)
{
for (int i = 0; i < n - 1; i++)
{
int flag = 0;
for (int j = 0; j < n - i - 1; j++)
{
if (a[j + 1] < a[j])
{
Swap(&a[j], &a[j + 1]);
flag = 1;
}
}
if (flag == 0)
break;
}
}
int GetMid(int* a, int left, int right)
{
int mid = left + (right - left) / 2;
if (a[left] > a[mid])
{
if (a[mid] > a[right])
return mid;
else if (a[left] < a[right])
return left;
else
return right;
}
else
{
if (a[mid] < a[right])
return mid;
else if (a[left] > a[right])
return left;
else
return right;
}
}
int PartSort1(int* a, int left, int right)
{
int mid = GetMid(a, left, right);
Swap(&a[mid], &a[left]);
int key = left;
while (left < right)
{
while (left < right && a[right] >= a[key])
{
--right;
}
while (left < right && a[left] <= a[key])
{
++left;
}
if (left < right)
Swap(&a[left], &a[right]);
}
mid = left;
Swap(&a[mid], &a[key]);
return mid;
}
int PartSort2(int* a, int left, int right)
{
int mid = GetMid(a, left, right);
Swap(&a[mid], &a[left]);
int keyi = a[left];
int hole = left;
while (left < right)
{
while (left < right && a[right] >= keyi)
--right;
a[hole] = a[right];
hole = right;
while (left < right && a[left] <= keyi)
++left;
a[hole] = a[left];
hole = left;
}
a[hole] = keyi;
return hole;
}
int PartSort3(int* a, int left, int right)
{
int mid = GetMid(a, left, right);
Swap(&a[mid], &a[left]);
int key = left;
int cur = left + 1;
int prev = left;
while (cur <= right)
{
if (a[cur] < a[key])
{
++prev;
Swap(&a[cur], &a[prev]);
}
++cur;
}
Swap(&a[key], &a[prev]);
return prev;
}
void QuickSort(int* a, int left, int right)
{
if (left >= right)
return;
if (right - left <= 8)
{
InsertSort(a + left, right - left + 1);
}
int key = PartSort3(a, left, right);
QuickSort(a, left, key - 1);
QuickSort(a, key + 1, right);
}
void QuickSortNonR(int* a, int left, int right)
{
ST p;
StackInit(&p);
StackPush(&p,left);
StackPush(&p, right);
while (!StackEmpty(&p))
{
int right2 = StackTop(&p);
StackPop(&p);
int left2 = StackTop(&p);
StackPop(&p);
int key = PartSort3(a, left2, right2);
if (key + 1 < right2)
{
StackPush(&p, key + 1);
StackPush(&p, right2);
}
if (left2 < right2 - 1)
{
StackPush(&p, left2);
StackPush(&p, key - 1);
}
}
StackDestory(&p);
}
test.c
#define _CRT_SECURE_NO_WARNINGS
#include"Sort.h"
void TestInsertSort()
{
int a[10] = { 53,26,46,76,85,90,64,34,50,33 };
int n = sizeof(a) / sizeof(a[0]);
InsertSort(a, n);
PrintSort(a, n);
}
void TestShellSort()
{
int a[10] = { 53,26,46,76,85,90,64,34,50,33 };
int n = sizeof(a) / sizeof(a[0]);
ShellSort(a, n);
PrintSort(a, n);
}
void TestHeapSort()
{
int a[10] = { 53,26,46,76,85,90,64,34,50,33 };
int n = sizeof(a) / sizeof(a[0]);
HeapSort(a,n);
PrintSort(a, n);
}
void TestSelectSort()
{
int a[10] = { 53,26,46,76,85,90,64,34,50,33 };
int n = sizeof(a) / sizeof(a[0]);
SelectSort(a,n);
PrintSort(a, n);
}
void TestBubbleSort()
{
int a[10] = { 53,26,46,76,85,90,64,34,50,33 };
int n = sizeof(a) / sizeof(a[0]);
BubbleSort(a,n);
PrintSort(a, n);
}
void TestQuickSort()
{
int a[10] = { 53,26,46,76,85,90,64,34,50,33 };
int n = sizeof(a) / sizeof(a[0]);
QuickSortNonR(a, 0, sizeof(a) / sizeof(int) - 1);
PrintSort(a, n);
}
void TestOP()
{
srand(time(0));
const int N = 10000000;
int* a1 = (int*)malloc(sizeof(int) * N);
int* a2 = (int*)malloc(sizeof(int) * N);
int* a3 = (int*)malloc(sizeof(int) * N);
int* a4 = (int*)malloc(sizeof(int) * N);
int* a5 = (int*)malloc(sizeof(int) * N);
int* a6 = (int*)malloc(sizeof(int) * N);
int* a7 = (int*)malloc(sizeof(int) * N);
for (int i = 0; i < N; ++i)
{
a1[i] = rand();
a2[i] = a1[i];
a3[i] = a1[i];
a4[i] = a1[i];
a5[i] = a1[i];
a6[i] = a1[i];
a7[i] = a1[i];
}
int begin1 = clock();
int end1 = clock();
int begin2 = clock();
ShellSort(a2, N);
int end2 = clock();
int begin3 = clock();
int end3 = clock();
int begin4 = clock();
HeapSort(a4, N);
int end4 = clock();
int begin5 = clock();
QuickSort(a5, 0, N - 1);
int end5 = clock();
int begin6 = clock();
int end6 = clock();
int begin7 = clock();
int end7 = clock();
printf("InsertSort:%d\n", end1 - begin1);
printf("ShellSort:%d\n", end2 - begin2);
printf("SelectSort:%d\n", end3 - begin3);
printf("HeapSort:%d\n", end4 - begin4);
printf("BubbleSort:%d\n", end7 - begin7);
printf("QuickSort:%d\n", end5 - begin5);
printf("MergeSort:%d\n", end6 - begin6);
free(a1);
free(a2);
free(a3);
free(a4);
free(a5);
free(a6);
free(a7);
}
int main()
{
TestInsertSort();
TestShellSort();
TestHeapSort();
TestSelectSort();
TestBubbleSort();
TestQuickSort();
return 0;
}
本期内容就到这里了,剩下的归并排序等下一期再发布,希望大家一键三连!
|