IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> Java实现常用的排序算法(快速排序、归并排序、基数排序) -> 正文阅读

[数据结构与算法]Java实现常用的排序算法(快速排序、归并排序、基数排序)

常见的排序算法

在这里插入图片描述

快速排序

1.简介

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n2),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好。

快速排序的最坏运行情况是 O(n2),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

2.思路分析

快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于分界值,而右边部分中各元素都大于或等于分界值。
(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

3.图解

3.1 开始

分别从arr数组的两端开始探测。先从右往左找一个小于8的数,再从左往右找一个大于8的数,然后交换他们。这里可以用两个变量L(左边)和R(右边),分别指向序列最左边和最右边。刚开始的时候让L指向数组的最左边,指向数字8。让R指向数组的最右边,指向数字11。
在这里插入图片描述

3.2 从右向左遇到小于基准的数

在这里插入图片描述

3.3 右边停止,从左向右寻找大于基准的数

在这里插入图片描述

3.4 交换L和R相对应的数

在这里插入图片描述

交换后
在这里插入图片描述

3.5持续上述方法

首先R开始出动。因为此处设置的基准数是最左边的数,所以需要让R先出动,这一点非常重要(请自己想一想为什么)。哨兵R一步一步地向左挪动(即R–-),直到找到一个小于8的数停下来。接下来哨兵L再一步一步向右挪动(即L++),直到找到一个数大于8的数停下来。

交换
在这里插入图片描述

交换后

在这里插入图片描述

这个时候R继续向左移动
在这里插入图片描述

然后L移动
在这里插入图片描述

L == R 时候,说明这个位置就是8的位置,交换
在这里插入图片描述

得到:

在这里插入图片描述
到此第一轮探测结束。此时以基准数8为分界点,8左边的数都小于等于8,8右边的数都大于等于8。回顾一下刚才的过程,其实R的使命就是要找小于基准数的数,而L的使命就是要找大于基准数的数,直到L和R碰头为止。

3.6 处理左边的数

在这里插入图片描述

3.7处理右边的数

在这里插入图片描述

得到:
在这里插入图片描述

4.代码实现

/**
 * 快速排序
 * @author 尹稳健~
 * @version 1.0
 * @time 2022/9/10
 */
public class QuickSort {
    public static void main(String[] args) {
        int[] arr = {8, 12, 19, -1, 45, 0, 14, 4, 11};
        quickSort(arr,0,arr.length-1);
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i]+" ");
        }
    }
    public static void quickSort(int[] arr,int start, int end){
        // 什么时候结束排序?
        if (start>end){
            return;
        }
        // 左指针
        int L = start;
        // 右指针
        int R = end;
        // 基准
        int pivot = arr[start];
        // 只要L!=R就继续循环
        while (L < R){
            // 右边大于基准,从右向左移动
            while (L<R && arr[R] >= pivot){
                R --;
            }
            // 左边小于基准,从左向右移动
            while (L<R&& arr[L] <= pivot){
                L ++;
            }
            // 说明右边有小于基准的数,左边有大于基准的数,交换
            if (L<R){
                int temp = arr[L];
                arr[L] = arr[R];
                arr[R] = temp;
            }
        }
        // L 与 R碰面 找到了 基准的位置
        arr[start] = arr[L];
        arr[L] = pivot;

        // 左边排序
        quickSort(arr,start,R-1);
        // 右边排序
        quickSort(arr,L+1,end);

    }

}

快速排序这篇文章写的好,可以参考别人的快速排序写法和理解


归并排序

1.简介

归并排序是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

2.思路分析

归并排序用到了分而治之的思想,其难点是治

  • 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  • 首先是分解序列,将序列分解到每个组中序列的数量为1,然后在进行合并排序
  • 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  • 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  • 重复上一步 直到某一指针达到序列尾
  • 将另一序列剩下的所有元素直接复制到合并序列尾

3.图解

3.1 拆分,将所有的序列分解

在这里插入图片描述

3.2开始排序合并

在这里插入图片描述

每次填充完后,指针移动一位
在这里插入图片描述

在这里插入图片描述

当左边数组没有元素后,右边直接填充进去
在这里插入图片描述

得到
在这里插入图片描述

4.代码实现

/**
 * 归并排序
 * @author 尹稳健~
 * @version 1.0
 * @time 2022/9/12
 */
public class MergeSort {
    public static void main(String[] args) {
        int[] arr = {1, 5, 6, 3, 2, 8, 7, 4};
        int[] temp = new int[arr.length];
        mergeSort(arr,0,arr.length-1,temp);
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i]+" ");
        }
    }

    /** 分解,并合并排序 */
    public static void mergeSort(int[] arr,int left ,int right,int[] temp){
        if (left<right){
            //中间索引
            int mid = (left+right)/2;
            //向左递归分解
            mergeSort(arr,left,mid,temp);
            //向右递归分解
            mergeSort(arr,mid+1,right,temp);
            //合并
            merge(arr,left,mid,right,temp);
        }
    }

    /**
     * 合并排序
     * @param arr   未排序的数组
     * @param left  左边有序子数组的初始索引
     * @param mid   中间索引
     * @param right 右边最大索引
     * @param temp  临时数组
     */
    public static void merge(int[] arr,int left,int mid,int right,int[] temp){
        // 左边指针索引
        int leftPoint = left;
        // 右边指针索引
        int rightPoint = mid+1;
        // 临时数据的指针
        int tempLeft = 0;

        // 两个序列都不为空时
        while (leftPoint <= mid && rightPoint <= right){
            //如果第一个序列的元素小于第二序列的元素,就将其放入temp中
            if (arr[leftPoint] <= arr[rightPoint]){
                temp[tempLeft] = arr[leftPoint];
                leftPoint++;
                tempLeft ++;
            }else{
                temp[tempLeft] = arr[rightPoint];
                rightPoint++;
                tempLeft ++;
            }
        }

        // 右序列为空,直接将做序列的所有元素填充进去
        while (leftPoint <= mid){
            temp[tempLeft] = arr[leftPoint];
            leftPoint++;
            tempLeft++;
        }

        // 左序列为空,直接将右序列的所有元素填充进去
        while (rightPoint <= right){
            temp[tempLeft] = arr[rightPoint];
            rightPoint++;
            tempLeft++;
        }

        //将临时数组中的元素放回数组arr中
        tempLeft = 0;
        leftPoint = left;
        while (leftPoint <= right){
            arr[leftPoint] = temp[tempLeft];
            leftPoint++;
            tempLeft++;
        }


    }
}



基数排序

1.简介

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog?m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

2.思路分析

  • 将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零
  • 从最低位开始,依次进行一次排序
  • 从最低位排序一直到最高位(个位->十位->百位->…->最高位)排序完成以后, 数列就变成一个有序序列
  • 需要我们获得最大数的位数
    • 可以通过将最大数变为String类型,再求得它的长度即可

3.图解

首先要有10个桶代表[0-9]

3.1第一轮按个位放入桶中

在这里插入图片描述
然后再依次将他们取出,如果一个桶里面有多个元素,先进去的那么先取出来
在这里插入图片描述

3.2 第二轮按十位放入桶中

在这里插入图片描述
如果没有十位数,那么就在个位的前面补0

在这里插入图片描述

3.3第三轮按百位上放入桶中

在这里插入图片描述

依次取出后
在这里插入图片描述

3.34第四轮按千位放入桶中

在这里插入图片描述

取出得到:

在这里插入图片描述

4.代码实现


/**
 * 基数排序
 * @author 尹稳健~
 * @version 1.0
 * @time 2022/9/13
 */
public class BaseSorted {
    public static void main(String[] args) {
        int[] arr = {43, 52, 1, 89, 190};
        sort(arr);
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
    }

    public static void sort(int[] arr){
        int maxLength = getMaxLength(arr);
        // 定义个二维数组桶,存储元素
        int[][] bucket = new int[10][arr.length];
        // 存储每个桶中有多少个元素
        int[] elementCounts = new int[10];
        for (int times = 1,step = 1; times < maxLength + 1; times++,step *= 10) {
            // 遍历数组,将元素存入桶中
            for (int i = 0; i < arr.length; i++) {
                // 获取位数上的数
                int digits = arr[i] / step % 10;
                bucket[digits][elementCounts[digits]] = arr[i];
                elementCounts[digits] ++;
            }

            //将桶中的元素重新放回到数组中
            //用于记录应该放入原数组的哪个位置
            int index = 0;
            for (int i = 0; i < 10; i++) {
                // 从桶中按放入顺序依次取出元素,放入原数组
                int position = 0;
                while ( elementCounts[i] > 0){
                    arr[index] = bucket[i][position];
                    position++;
                    elementCounts[i]--;
                    index++;
                }
            }



        }

    }

    /** 获取数组中元素长度最长的长度 */
    public static int getMaxLength(int[] arr){
        int max = arr[0];
        for (int i = 1; i < arr.length; i++) {
            if (arr[i] > max ){
                max = arr[i];
            }
        }
        return (max + "").length();
    }
}

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-09-15 02:14:52  更:2022-09-15 02:16:01 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 21:29:59-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码