leetcode 周赛
题目一
日期问题: 区间问题:求交集
class Solution {
public:
int arr[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int countDaysTogether(string arriveAlice, string leaveAlice, string arriveBob, string leaveBob) {
for (int i = 1; i <= 12; i++) {
arr[i] += arr[i - 1];
}
int a, b, c, d;
process(arriveAlice, leaveAlice, a, b);
process(arriveBob, leaveBob, c, d);
// cout << a << " " << b << endl;
// cout << c << " " << d << endl;
if (b < c || d < a) return 0;
if (a <= c) {
return min(b, d) - c + 1;
} else {
return min(b, d) - a + 1;
}
return 0;
}
void process(string& a, string& b, int& c, int& d) {
int x = (a[0] - '0') * 10 + (a[1] - '0');
int y = (a[3] - '0') * 10 + (a[4] - '0');
c = arr[x - 1] + y;
x = (b[0] - '0') * 10 + (b[1] - '0');
y = (b[3] - '0') * 10 + (b[4] - '0');
d = arr[x - 1] + y;
}
};
题目二
贪心算法 匈牙利算法
class Solution {
public:
int matchPlayersAndTrainers(vector<int>& players, vector<int>& trainers) {
sort(players.begin(), players.end());
sort(trainers.begin(), trainers.end());
int n = players.size(), m = trainers.size();
int res = 0;
for (int i = 0, j = 0; i < n && j < m;) {
int a = players[i], b = trainers[j];
if (a <= b) {
res++;
i++, j++;
continue;
} else {
j++;
}
}
return res;
}
};
题目三
class Solution {
public:
vector<int> smallestSubarrays(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> x(32, vector<int>(n + 1));
nums.push_back(INT_MAX);
vector<int> ret;
for (int i = n; i >= 0; i--) {
int res = 1;
for (int j = 0; j < 31; j++) {
if (i == n) {
x[j][i] = n;
continue;
}
if (nums[i] & (1 << j)) x[j][i] = i;
else x[j][i] = x[j][i + 1];
if (x[j][i] == n) continue;
res = max(x[j][i] - i + 1, res);
}
ret.push_back(res);
}
reverse(ret.begin(), ret.end());
ret.pop_back();
return ret;
}
};
题目四
没写出来.看答案是比较难想的一种枚举。对于任意一遍交易,对于其中的交易
i
i
i,必须满足等式
m
o
n
e
y
?
(
a
0
?
b
0
)
?
(
a
1
?
b
1
)
?
(
a
2
?
b
2
)
.
.
.
.
>
=
a
i
money - (a_0 - b_0) - (a_1 - b_1) - (a_2 - b_2) ....>= a_i
money?(a0??b0?)?(a1??b1?)?(a2??b2?)....>=ai?(注意0, 1, 不是数组顺序,而是任意一种交易顺序)。整理一下有:
m
o
n
e
y
>
=
(
a
0
?
b
0
)
+
(
a
1
?
b
1
)
+
(
a
2
?
b
2
)
.
.
.
.
+
a
i
money>= (a_0 - b_0) + (a_1 - b_1) + (a_2 - b_2) .... + a_i
money>=(a0??b0?)+(a1??b1?)+(a2??b2?)....+ai?。 可以看到等式有两部分,前面的每笔交易结果之和与第
i
i
i笔交易需要的钱的和。这时候转换思维,想象
a
i
a_i
ai?不是第
i
i
i笔交易,而是对于交易
i
i
i,我的money最少需要准备多少钱,才能满足最坏情况的交易
i
i
i,那应该是右边最大。
a
i
a_i
ai?是固定的,那么只需要前面的和最大。前面和最大,要把所有
a
>
b
a>b
a>b的交易加起来,答案就呼之欲出了。 贴一个学会之后自己写的代码。
typedef long long LL;
class Solution {
public:
long long minimumMoney(vector<vector<int>>& transactions) {
LL sum = 0;
for (auto &ii : transactions) {
int a = ii[0], b = ii[1];
if (a > b) sum += a - b;
}
LL res = 0;
for (auto &ii : transactions) {
int a = ii[0], b = ii[1];
if (a > b) res = max(res, a + sum - a + b);
else res = max(res, a + sum);
}
return res;
}
};
|