一、排序的概念
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。
二、常见的排序算法
1. 插入排序
基本思想: 直接插入排序是一种简单的插入排序法,其基本思想是:
把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。
实际中我们玩扑克牌时,就用了插入排序的思想
1.1 直接插入排序:
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与 array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移
void InsertSort( int* arr, int n )
{
for ( int i = 0; i < n - 1; ++i )
{
int end = i;
int tmp = arr[end + 1];
while ( end >= 0 )
{
if ( arr[end] > tmp )
{
arr[end + 1] = arr[end];
--end;
}else {
break;
}
}
arr[end + 1] = tmp;
}
}
直接插入排序的特性总结:
- 元素集合越接近有序,直接插入排序算法的时间效率越高
- 时间复杂度:O(N^2)
- 空间复杂度:O(1),它是一种稳定的排序算法
- 稳定性:稳定
1.2 希尔排序( 缩小增量排序 )
希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数gap,把待排序文件中所有记录分成gap个组,所有距离为gap的记录分在同一组内,并对每一组内的记录进行排序。然后调整gap,重复上述分组和排序的工作。当到达gap=1时,所有记录在同一组内排好序。
void ShellSort(int* a, int n)
{
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;
for (int i = 0; i < n - gap; ++i)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = tmp;
}
}
}
希尔排序的特性总结:
- 希尔排序是对直接插入排序的优化。
- 当gap > 1时都是预排序,目的是让数组更接近于有序。
当gap == 1时,数组已经接近有序的了,这样就会很快排好序。整体而言,可以达到优化的效果。 - 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在很多书中给出的希尔排序的时间复杂度都不固定
我们暂时可按照:O(n1.25) 到 O(1.6 * n1.25)来算。 - 稳定性:不稳定
2. 选择排序
基本思想: 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始(或末尾)位置,直到全部待排序的数据元素排完
2,1 直接选择排序:
在元素集合 array[i]–array[n-1] 中选择关键码最大(小)的数据元素 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素
void Swap(int* px, int* py)
{
int tmp = *px;
*px = *py;
*py = tmp;
}
void SelectSort(int* a, int n)
{
int begin = 0, end = n - 1;
while (begin < end)
{
int minIndex = begin, maxIndex = end;
for (int i = begin + 1; i <= end; ++i)
{
if (a[i] < a[minIndex])
{
minIndex = i;
}
if (a[i] > a[maxIndex])
{
maxIndex = i;
}
}
Swap(&a[begin], &a[minIndex]);
if (maxIndex == begin)
{
maxIndex = minIndex;
}
Swap(&a[end],&a[maxIndex]);
++begin;
--end;
}
}
直接选择排序的特性总结:
- 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:不稳定
2.2 堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。 需要注意的是排升序要建大堆,排降序建小堆。
void AdjustDwon(int* a, int n, int parent)
{
int maxChild = parent * 2 + 1;
while (maxChild < n)
{
if (maxChild + 1 < n && a[maxChild] < a[maxChild + 1])
{
++maxChild;
}
if (a[parent] < a[maxChild])
{
Swap(&a[parent], &a[maxChild]);
parent = maxChild;
maxChild = parent * 2 + 1;
}
else
{
break;;
}
}
}
void HeapSort(int* a, int n)
{
for (int i = (n - 2) / 2; i >= 0; --i)
{
AdjustDwon(a, n, i);
}
for (int i = 0; i < n; ++i)
{
Swap(&a[0], &a[n - 1 - i]);
AdjustDwon(a, n - 1 - i, 0);
}
}
堆排序的特性总结:
- 堆排序使用堆来选数,效率高。
- 时间复杂度:O(N*logN)
- 空间复杂度:O(1)
- 稳定性:不稳定
3. 交换排序
基本思想:交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置 交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。
3.1 冒泡排序
void BubbleSort(int* a, int n)
{
for (int j = 0; j < n; ++j)
{
int exchange = 1;
for (int i = 1; i < n - j; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 0;
}
}
if (exchange)
{
break;
}
}
}
冒泡排序的特性总结:
- 冒泡排序是一种非常容易理解的排序
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:稳定
3.2 快速排序 (递归 + 非递归)
快速排序是一种交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后对左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
将区间按照基准值划分为左右两半部分的常见方式: 快速排序的特性总结:
-
快速排序整体的综合性能和使用场景都是比较好的,所以才叫快速排序 -
时间复杂度:O(N*logN) -
空间复杂度:O(logN) -
稳定性:不稳定
快速排序递归版:
void Swap(int* px, int* py)
{
int tmp = *px;
*px = *py;
*py = tmp;
}
int GetMidIndex(int* a, int left, int right)
{
int mid = left + (right - left) / 2;
if (a[left] < a[mid])
{
if (a[mid] < a[right])
{
return mid;
}
else if (a[left] > a[right])
{
return left;
}
else
{
return right;
}
}
else
{
if (a[mid] > a[right])
{
return mid;
}
else if (a[left] < a[right])
{
return left;
}
else
{
return right;
}
}
}
int PartSort1(int* a, int left, int right)
{
int mid = GetMidIndex(a, left, right);
Swap(&a[left], &a[mid]);
int keyi = left;
while (left < right)
{
while (left < right && a[right] >= a[keyi])
{
--right;
}
while (left < right && a[left] <= a[keyi])
{
++left;
}
if (left < right)
{
Swap(&a[left], &a[right]);
}
}
int meeti = left;
Swap(&a[meeti], &a[keyi]);
return meeti;
}
int PartSort2(int* a, int left, int right)
{
int mid = GetMidIndex(a, left, right);
Swap(&a[left], &a[mid]);
int key = a[left];
int hole = left;
while (left < right)
{
while (left < right && a[right] >= key)
{
--right;
}
a[hole] = a[right];
hole = right;
while (left < right && a[left] <= key)
{
++left;
}
a[hole] = a[left];
hole = left;
}
int meeti = left;
a[meeti] = key;
return meeti;
}
int PartSort3(int* a, int left, int right)
{
int mid = GetMidIndex(a, left, right);
Swap(&a[left], &a[mid]);
int keyi = left;
int prev = left, cur = left + 1;
while (cur <= right)
{
if (a[cur] < a[keyi] && ++prev != cur)
{
Swap(&a[prev], &a[cur]);
}
++cur;
}
Swap(&a[prev], &a[keyi]);
return prev;
}
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
{
return;
}
int keyi = PartSort3(a, begin, end);
QuickSort(a, begin, keyi - 1);
QuickSort(a, keyi + 1, end);
}
快速排序(非递归)
void QuickSortNonR(int* a, int begin, int end)
{
Stack st;
StackInit(&st);
StackDestroy(&st);
StackPush(&st, begin);
StackPush(&st, end);
while (!StackEmpty(&st))
{
int right = StackTop(&st);
StackPop(&st);
int left = StackTop(&st);
StackPop(&st);
int keyi = PartSort2(a, left, right);
if (keyi + 1 < right)
{
StackPush(&st, keyi + 1);
StackPush(&st, right);
}
if (left < keyi - 1)
{
StackPush(&st, left);
StackPush(&st, keyi - 1);
}
}
}
4. 归并排序(递归 + 非递归)
基本思想: 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序 列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:
归并排序的特性总结:
- 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问
题。 - 时间复杂度:O(N*logN)
- 空间复杂度:O(N)
- 稳定性:稳定
归并排序(递归)
void _MergeSort(int* a, int begin, int end, int* tmp)
{
if (begin >= end)
{
return;
}
int mid = begin + (end - begin) / 2;
_MergeSort(a, begin, mid, tmp);
_MergeSort(a, mid + 1, end, tmp);
int begin1 = begin, end1 = mid;
int begin2 = mid + 1, end2 = end;
int i = begin;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] <= a[begin2])
{
tmp[i++] = a[begin1++];
}
else
{
tmp[i++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[i++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[i++] = a[begin2++];
}
memcpy(a + begin, tmp + begin, (end - begin + 1) * sizeof(int));
}
void MergeSort(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
if (tmp == NULL)
{
perror("malloc fail\n");
return;
}
_MergeSort(a, 0, n - 1, tmp);
free(tmp);
tmp = NULL;
}
归并排序(非递归)
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
if (tmp == NULL)
{
perror("malloc fail\n");
return;
}
int gap = 1;
while (gap < n)
{
for (int j = 0; j < n; j += 2 * gap)
{
int begin1 = j, end1 = j + gap - 1;
int begin2 = j + gap, end2 = j + 2 * gap - 1;
int i = j;
if (end1 >= n)
{
break;
}
if (begin2 >= n)
{
break;
}
if (end2 >= n)
{
end2 = n - 1;
}
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] <= a[begin2])
{
tmp[i++] = a[begin1++];
}
else
{
tmp[i++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[i++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[i++] = a[begin2++];
}
memcpy(a + j, tmp + j, (end2 - j + 1) * sizeof(int));
}
gap *= 2;
}
free(tmp);
tmp = NULL;
}
5. 排序算法复杂度及稳定性分析
|