Given a constant?K?and a singly linked list?L, you are supposed to reverse the links of every?K?elements on?L. For example, given?L?being 1→2→3→4→5→6, if?K=3, then you must output 3→2→1→6→5→4; if?K=4, you must output 4→3→2→1→5→6.
Each input file contains one test case. For each case, the first line contains the address of the first node, a positive?N?(≤105) which is the total number of nodes, and a positive?K?(≤N) which is the length of the sublist to be reversed. The address of a node is a 5-digit nonnegative integer, and NULL is represented by -1.
Then?N?lines follow, each describes a node in the format:
Address Data Next
where?Address ?is the position of the node,?Data ?is an integer, and?Next ?is the position of the next node.
Output Specification:
For each case, output the resulting ordered linked list. Each node occupies a line, and is printed in the same format as in the input.
00100 6 4 00000 4 99999 00100 1 12309 68237 6 -1 33218 3 00000 99999 5 68237 12309 2 33218
Sample Output:
00000 4 33218 33218 3 12309 12309 2 00100 00100 1 99999 99999 5 68237 68237 6 -1
解题思路:
链表转置问题,首先我们需要定义一个结构来存储这些数据的Address,Data,Next;如果我们想要节约时间的话,可以把一开始对应数组的下标当作是他的地址,这样的话查找就会块很多,查找如下:
for(int i = address;i!=-1;i = number[i].next){
if(num<K){
t[tip].push_back(number[i]);
num++;
}else{
num = 1;
tip++;
t[tip].push_back(number[i]);
}
}
每K个数字就转置一次,所以可以用vector把每K个数据存放一次,再分别转置后凭借在一起即可。
易错点:
1. 测试点1是因为有好几组的数据需要转置,每个数据的末尾,指向的都是后一个数组的首部,你要注意的就是,你指向的后一个数据是否已经转置过了;
2. 测试点5是需要注意每次放在数组里面数据的个数;
代码:
#include<bits/stdc++.h>
using namespace std;
typedef struct Node{
int add;
int weight;
int next;
};
int main(){
int address,N,K;
cin>>address>>N>>K;
Node number[100000];
for(int i=0;i<N;i++){
int index,w,next;
cin>>index>>w>>next;
number[index].add = index;
number[index].weight = w;
number[index].next = next;
}
vector<Node> t[N/K+1];
vector<Node> result;
int tip = 0;
int num = 0;
for(int i = address;i!=-1;i = number[i].next){
if(num<K){
t[tip].push_back(number[i]);
num++;
}else{
num = 1;// num是重置为1的别搞错了!!!
tip++;
t[tip].push_back(number[i]);
}
}
for(int i=0;i<=tip;i++){
if(t[i].size()!=K){
for(int j=0;j<t[i].size();j++){
result.push_back(t[i][j]);
}
}else{
if(i!=tip){
for(int j=t[i].size()-1;j>=0;j--){
Node k;
if(j!=0){
k.add = t[i][j].add;
k.next = t[i][j-1].add;
k.weight = t[i][j].weight;
}else{
k.add = t[i][j].add;
k.next = t[i+1][0].add;
k.weight = t[i][j].weight;
}
result.push_back(k);
}
}else{
for(int j=t[i].size()-1;j>=0;j--){
Node k;
if(j!=0){
k.add = t[i][j].add;
k.next = t[i][j-1].add;
k.weight = t[i][j].weight;
}else{
k.add = t[i][j].add;
k.next = -1;
k.weight = t[i][j].weight;
}
result.push_back(k);
}
}
}
}
for(int i=0;i<tip;i++){
result[i*K+K-1].next = result[i*K+K].add;
}
for(auto i = 0;i<result.size();i++){
if(result[i].next!=-1){
printf("%05d %d %05d\n",result[i].add,result[i].weight,result[i].next);
}else{
printf("%05d %d %d\n",result[i].add,result[i].weight,result[i].next);
}
}
return 0;
}
|