| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 数据结构与算法 -> Java 数据结构与算法之树(AVL) -> 正文阅读 |
|
[数据结构与算法]Java 数据结构与算法之树(AVL) |
一、前言AVL树历史 在计算机科学中,AVL 树以其两位苏联发明家Georgy Adelson-Velsky和 Evgenii Landis的名字命名,他们在 1962 年的论文“信息组织算法”中发表了它。它是一种自平衡二叉搜索树(BST),这是发明的第一个这样的数据结构。 二、AVL树数据结构AVL 自平衡二叉树的出现,其目的在于解决二叉搜索树退化成链表的问题。当我们向BST二叉搜索树顺序存入1、2、3、4、5、6、7个元素时,它会退化成一条链表,因而失去树查询的时间复杂度,所以我们需要AVL树平衡树高。如图所示: 那么AVL树是怎么平衡树高的呢? 当二叉树的左右分支树高差不为1时,需要进行左旋或者右旋,来调衡树高。这有点像开车的时候,如果车头偏左就往右打方向盘,车头偏右就往左打方向盘是一个道理。那这个方向盘(左旋、右旋)是怎么打的呢,主要分以下四种情况;
节点树高:以节点4为说明,最长的左右分支节点个数,就是节点4的最大树高。这里节点4左右孩子节点最长路径都为2,所以它的树高为2。同理可计算其他节点树高。 平衡因子:通过当前节点的左右子节点作差计算平衡因子,之后AVL树通过平衡因子,定义了什么时候进行左旋和右旋。 三、AVL树代码实现对于 AVL 树的实现与 BST 二叉搜索树相比,在树的节点定义上多了一个树高的属性。也有些AVL树使用的是平衡因子的属性,就是通过树高计算后的结果。树节点代码结构如下; public class { public Class<?> clazz; public Integer value; public Node parent; public Node left; public Node right; public int height; } 接下来小傅哥就分别通过代码讲解下一颗AVL树的左旋、右旋、左旋+右旋、右旋+左旋的代码操作。不要担心这没有多复杂,只要你能搞清楚左旋,就能搞清楚右旋。两旋弄懂组合就没啥难度了。 源码地址:https://github.com/fuzhengwei/java-algorithms 本章源码:https://github.com/fuzhengwei/java-algorithms/tree/main/data-structures/src/main/java/stack 动画演示:https://visualgo.net/zh/bst?slide=1 —— AVL树初次理解还是比较困难的,可以结合学习内容的同时做一些动画演示。 1. 左旋 图解左旋操作;它就是一种摘链更换调整节点的处理过程,小傅哥把它分解展示,整个过程如下; 代码实现: protected Node (Node node) { Node temp = node.right; temp.parent = node.parent; node.right = temp.left; if (node.right != null) { node.right.parent = node; } temp.left = node; node.parent = temp; if (temp.parent == null) { root = temp; } else { if (temp.parent.left == node) { temp.parent.left = temp; } else { temp.parent.right = temp; } } return temp; } 左旋的作用,相当于通过向上迁移树高差大于1的右子节点来降低树高的操作。 通过节点4拿到父节点2和右子节点5,把父节点2和右子节点5建立关联 节点5的左子节点,相当于是大于4小于4的那么一个值,只不过这里不体现。那么这个节点4的左子节点,应该被迁移到节点3的右子节点上。 整理节点5的关系,左子节点为4。左子节点4的父节点为5 如果说迁移上来的节点5无父节点,那么它就是父节点 root = temp 迁移上来的节点5,找到原节点4是对应父节点的左子节点还是右子节点,对应的设置节点5的左右位置 2. 右旋 图解右旋操作;它就是一种摘链更换调整节点的处理过程,小傅哥把它分解展示,整个过程如下; 代码实现: protected Node (Node node) { Node temp = node.left; temp.parent = node.parent; node.left = temp.right; if (node.left != null) { node.left.parent = node; } temp.right = node; node.parent = temp; if (temp.parent == null) { root = temp; } else { if (temp.parent.left == node) { temp.parent.left = temp; } else { temp.parent.right = temp; } } return temp; } 右旋的作用,相当于通过向上迁移树高差大于1的右子节点来降低树高的操作。 通过节点3拿到父节点4和左子节点2,把父节点7和左子节点2建立关联 节点2的右子节点,相当于是大于2小于3的那么一个值,只不过这里不体现。那么这个节点2的右子节点,应该被迁移到节点3的左子节点上。 整理节点2的关系,右子节点为3。右子节点3的父节点为2 如果说迁移上来的节点2无父节点,那么它就是父节点 root = temp 迁移上来的节点2,找到原节点3是对应父节点的左子节点还是右子节点,对应的设置节点2的左右位置 3. 左旋 + 右旋 之所以会有左旋 + 右旋,是因为一次右旋操作没法平衡树高,而这种树的不平衡节点的左子节点的右子节点过长,所以要把不平衡节点的左子节点向左旋转一次,之后再进行右旋操作。 ? 代码实现: if (factor(node.left) >= 0) { Node temp = super.rotateRight(node); refreshHeight(temp.right); refreshHeight(temp); } else { Node temp = super.rotateLeft(node.left); refreshHeight(temp.left); refreshHeight(temp); node.left = temp; temp = super.rotateRight(node); refreshHeight(temp.right); refreshHeight(temp); } 4. 右旋 + 左旋 之所以会有右旋 + 左旋,是因为一次左旋操作没法平衡树高,而这种树的不平衡节点的右子节点的左子节点过长,所以要把不平衡节点的右子节点向右旋转一次,之后再进行左旋操作。 代码实现: if (factor(node.right) <= 0) { Node temp = super.rotateLeft(node); refreshHeight(temp.left); refreshHeight(temp); } else { Node temp = super.rotateRight(node.right); refreshHeight(temp.right); refreshHeight(temp); node.right = temp; temp = super.rotateLeft(node); refreshHeight(temp.left); refreshHeight(temp); } 四、AVL树功能测试为了验证AVL树的实现正确与否,这里我们做一下随机节点的插入,如果它能一直保持平衡,那么它就是一颗可靠 AVL 平衡树。 单元测试: public void () { AVLTree tree = new AVLTree(); for (int i = 0; i < 30; i++) { tree.insert(new Random().nextInt(100)); } System.out.println(tree); } 测试结果: 输入节点:61,3,34,82,1,75,56,65,87,18,3,96,53,50,42,24,69,11,95,69,1,1,84,22,5,70,28,55,38,92 /----- 96(0) /----- 95(1) | \----- 92(0) /----- 87(2) | | /----- 84(0) | \----- 82(1) /----- 75(3) | | /----- 70(0) | | /----- 69(1) | \----- 69(2) | \----- 65(0) 61(5) | /----- 56(1) | | \----- 55(0) | /----- 53(2) | | | /----- 50(0) | | \----- 42(1) | | \----- 38(0) \----- 34(4) | /----- 28(0) | /----- 24(1) | | \----- 22(0) | /----- 18(2) | | \----- 11(1) | | \----- 5(0) \----- 3(3) | /----- 3(1) | | \----- 1(0) \----- 1(2) \----- 1(0) Process finished with exit code 0 随机插入30个节点,每个节点的顺序已经打印,经过AVL左右旋调衡后,二叉结构始终保持树高平衡因子不超过1,那么验证通过。 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/25 19:37:43- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |