插入排序
直接插入排序
基本思想: 直接插入排序是一种简单的插入排序法,其基本思想是:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。 实际中我们玩扑克牌时,就用了插入排序的思想 排序过程: 当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移 直接插入排序的特性总结:
- 元素集合越接近有序,直接插入排序算法的时间效率越高
- 时间复杂度:O(N^2)
- 空间复杂度:O(1),它是一种稳定的排序算法
- 稳定性:稳定
void InsertSort(int* a, int n)
{
for (int i = 0; i < n - 1; i++)
{
int end = i;
int x = a[end + 1];
while (end >= 0)
{
if (a[end] > x)
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end + 1] = x;
}
}
希尔排序
基本思想: 希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达gap=1时,所有记录在统一组内排好序。 排序过程: 第一次分为5组,同颜色的的为一组 第二次分为两组,同颜色的为一组 第三次分为一组
希尔排序是直接插入排序的变形,直接插入排序元素越接近有序,它的时间复杂度越低。所以希尔就想出有没有一种算法想让数组接近有序,再进行直接插入排序,最后希尔找到了这种方法。 有很多人不明白,为什么这里的时间复杂度会比直接排序第,大家可以去搜查一下,因为计算太复杂所以不讲述。
希尔排序的特性总结:
- 希尔排序是对直接插入排序的优化。
- 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就
会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。 - 希尔排序的时间复杂度不好计算,需要进行推导,推导出来平均时间复杂度: O(N1.3—N2)
- 稳定性:不稳定
void ShellSort(int* a, int n)
{
int gap = n;
while (gap > 1)
{
gap = gap/3 + 1;
for (int i = 0; i < n - gap; i++)
{
int end = i;
int x = a[end + gap];
while (end >= 0)
{
if (a[end] > x)
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = x;
}
}
}
选择排序
选择排序
基本思想: 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
排序过程:
- 在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
- 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
- 在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素
直接选择排序的特性总结:
- 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:不稳定
void SelectSort(int* a, int n)
{
int begin = 0;
int end = n;
while (begin < end)
{
int mini = begin;
int maxi = begin;
for (int i = begin; i < end; i++)
{
if (a[mini] > a[i])
{
mini = i;
}
if (a[maxi] < a[i])
{
maxi = i;
}
}
swap(&a[mini], &a[begin]);
if (maxi == begin)
{
maxi = mini;
}
swap(&a[maxi], &a[end - 1]);
begin++;
end--;
}
}
这里给的代码有进行优化,每次选两个数,当时间复杂度没有降低,所以不是质级别的优化
堆排序
基本思想: 堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
排序过程: 1.先建堆 2.再交换堆顶和堆尾的数据 3.删除堆顶数据(紫色表示数据已经不在堆内) 4.把堆进行向下调整 这里删除了建堆和向下调整的过程
堆排序的特性总结:
- 堆排序使用堆来选数,效率就高了很多。
- 时间复杂度:O(N*logN)
- 空间复杂度:O(1)
- 稳定性:不稳定
- 排升序建大堆,排降序建小堆
void AdjustDown(int* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
if (child + 1 < n && a[child + 1] > a[child])
{
child++;
}
if (a[child] > a[parent])
{
swap(&a[parent], &a[child]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
for(int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
int end = n - 1;
while (end >= 0)
{
swap(&a[0], &a[end]);
AdjustDown(a, end, 0);
end--;
}
}
|