IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> 数据结构和算法 -> 正文阅读

[数据结构与算法]数据结构和算法

数据结构

一、简介

数据结构是为实现对计算机数据有效使用的各种数据组织形式,服务于各类计算机操作。不同的数据结构具有各自对应的适用场景,旨在降低各种算法计算的时间与空间复杂度,达到最佳的任务执行效率。

常见的数据结构可分为「线性数据结构」与「非线性数据结构」,具体为:「数组」、「链表」、「栈」、「队列」、「树」、「图」、「散列表」、「堆」

1.数组

数组是将相同类型的元素存储于连续内存空间的数据结构,其长度不可变。

构建此数组需要在初始化时给定长度,并对数组每个索引元素赋值,代码如下:

// 初始化一个长度为 5 的数组 array
int array[5];
// 元素赋值
array[0] = 2;
array[1] = 3;
array[2] = 1;
array[3] = 0;
array[4] = 2;

「可变数组」是经常使用的数据结构,其基于数组和扩容机制实现,相比普通数组更加灵活。常用操作有:访问元素、添加元素、删除元素。

// 初始化可变数组
vector<int> array;

// 向尾部添加元素
array.push_back(2);
array.push_back(3);
array.push_back(1);
array.push_back(0);
array.push_back(2);

2.链表

链表以节点为单位,每个元素都是一个独立对象,在内存空间的存储是非连续的。链表的节点对象具有两个成员变量:「值 val」,「后继节点引用 next」 。

struct ListNode {
    int val;        // 节点值
    ListNode *next; // 后继节点引用
    ListNode(int x) : val(x), next(NULL) {}
};

如下所示,建立此链表需要实例化每个节点,并构建各节点的引用指向。

// 实例化节点
ListNode *n1 = new ListNode(4); // 节点 head
ListNode *n2 = new ListNode(5);
ListNode *n3 = new ListNode(1);

// 构建引用指向
n1->next = n2;
n2->next = n3;

3.栈

栈是一种具有 「先入后出」 特点的抽象数据结构,可使用数组或链表实现。

stack<int> stk;

如下所示,通过常用操作「入栈 push()」,「出栈 pop()」,展示了栈的先入后出特性。

stk.push(1); // 元素 1 入栈
stk.push(2); // 元素 2 入栈
stk.pop();   // 出栈 -> 元素 2
stk.pop();   // 出栈 -> 元素 1

4.队列

队列是一种具有 「先入先出」 特点的抽象数据结构,可使用链表实现。

queue<int> que;

如下所示,通过常用操作「入队 offer()」,「出队 poll()」,展示了队列的先入先出特性。

que.push(1); // 元素 1 入队
que.push(2); // 元素 2 入队
que.pop();   // 出队 -> 元素 1
que.pop();   // 出队 -> 元素 2

5.树

树是一种非线性数据结构,根据子节点数量可分为 「二叉树」 和 「多叉树」,最顶层的节点称为「根节点root」。以二叉树为例,每个节点包含三个成员变量:「值 val」、「左子节点 left」、「右子节点 right」 。

struct TreeNode {
    int val;         // 节点值
    TreeNode *left;  // 左子节点
    TreeNode *right; // 右子节点
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

如下所示,建立此二叉树需要实例化每个节点,并构建各节点的引用指向。

// 初始化节点
TreeNode *n1 = new TreeNode(3); // 根节点 root
TreeNode *n2 = new TreeNode(4);
TreeNode *n3 = new TreeNode(5);
TreeNode *n4 = new TreeNode(1);
TreeNode *n5 = new TreeNode(2);

// 构建引用指向
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;

6.图

图是一种非线性数据结构,由「节点(顶点)vertex」和「边 edge」组成,每条边连接一对顶点。根据边的方向有无,图可分为「有向图」和「无向图」。本文 以无向图为例 开展介绍。

无向图的 顶点 和 边 集合分别为:

顶点集合: vertices = {1, 2, 3, 4, 5}
边集合: edges = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (3, 5), (4, 5)}

表示图的方法通常有两种:

邻接矩阵: 使用数组 vertices 存储顶点,邻接矩阵 edges 存储边; edges[i] [j] 代表节点 i + 1 和 节点 j + 1 之间是否有边。

int vertices[5] = {1, 2, 3, 4, 5};
int edges[5][5] = {{0, 1, 1, 1, 1},
                   {1, 0, 0, 1, 0},
                   {1, 0, 0, 0, 1},
                   {1, 1, 0, 0, 1},
                   {1, 0, 1, 1, 0}};

邻接表: 使用数组 vertices 存储顶点,邻接表 edges 存储边。 edges 为一个二维容器,第一维 i代表顶点索引,第二维 edges[i] 存储此顶点对应的边集和;例如 edges[0] = [1, 2, 3, 4] 代表 vertices[0] 的边集合为[1,2,3,4] 。

vertices = [1, 2, 3, 4, 5]
edges = [[1, 2, 3, 4],
         [0, 3],
         [0, 4],
         [0, 1, 4],
         [0, 2, 3]]

7.散列表

散列表是一种非线性数据结构,通过利用 Hash 函数将指定的「键 key」映射至对应的「值 value」,以实现高效的元素查找。

设想一个简单场景:a、b、c的学号分别为 10001, 10002, 10003 。
现需求从「姓名」查找「学号」。

则可通过建立姓名为 key ,学号为 value 的散列表实现此需求,代码如下:

// 初始化散列表
unordered_map<string, int> dic;

// 添加 key -> value 键值对
dic["a"] = 10001;
dic["b"] = 10002;
dic["c"] = 10003;

// 从姓名查找学号
dic.find("a")->second; // -> 10001
dic.find("b")->second; // -> 10002
dic.find("c")->second; // -> 10003

Hash 函数设计 Demo:

将三人的姓名存储至以下数组中,则各姓名在数组中的索引分别为 0, 1, 2 。

string names[] = { "a", "b", "c" };

此时,我们构造一个简单的 Hash 函数( % 为取余符号 ),公式和封装函数如下所示:

hash(key) = (key - 1) % 10000

int hash(int id) {
    int index = (id - 1) % 10000;
    return index;
}

则我们构建了以学号为 key 、姓名对应的数组索引为 value 的散列表。利用此 Hash 函数,则可在 O(1)O(1) 时间复杂度下通过学号查找到对应姓名,即:

names[hash(10001)] // a
names[hash(10002)] // b
names[hash(10003)] // c

8.堆

堆是一种基于「完全二叉树」的数据结构,可使用数组实现。以堆为原理的排序算法称为「堆排序」,基于堆实现的数据结构为「优先队列」。堆分为「大顶堆」和「小顶堆」,大(小)顶堆:任意节点的值不大于(小于)其父节点的值。

完全二叉树定义: 设二叉树深度为 k,若二叉树除第 k层外的其它各层(第 1至 k-1 层)的节点达到最大个数,且处于第 k 层的节点都连续集中在最左边,则称此二叉树为完全二叉树。

如下图所示,为包含 1, 4, 2, 6, 8 元素的小顶堆。将堆(完全二叉树)中的结点按层编号,即可映射到右边的数组存储形式。
在这里插入图片描述

通过使用「优先队列」的「压入 push()」和「弹出 pop()」操作,即可完成堆排序,实现代码如下:

// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> heap;

// 元素入堆
heap.push(1);
heap.push(4);
heap.push(2);
heap.push(6);
heap.push(8);

// 元素出堆(从小到大)
heap.pop(); // -> 1
heap.pop(); // -> 2
heap.pop(); // -> 4
heap.pop(); // -> 6
heap.pop(); // -> 8

注:文章借鉴力扣图解算法数据结构

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-10-17 12:59:48  更:2022-10-17 13:00:39 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 19:50:19-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码