IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 数据结构与算法 -> LeetCode:寻找两个正序数组的中位数----多种解题方式 -> 正文阅读

[数据结构与算法]LeetCode:寻找两个正序数组的中位数----多种解题方式

在这里插入图片描述

写在前面:在学习算法中我们会学到很多经典的算法,双指针,二分查找等等,但是这只是一种思想,解题时我们可以灵活的运用,也不必局限一种形式,要将学到的东西,转换成自己的东西。

题目

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n))

举例

实例1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

实例2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

注意本题在力扣中不用返回的数据不用考虑小数位数,系统会自动保留对应的位数

思路一 运用归并排序的思想,双指针

因为这是两个有序数组,在两个有序数组中寻找中位数,可以先考虑将两个数组合并起来,然后找中位数

有序数组的合并比较简单,就是用两个指针分别指向两个数组的开头,依次比较指针指向的数字,较少的数字添加到新数组,指针加1,然后再重复以上的循环,直至其中一个指针越界。最后将未添加完的数字合并到新数组

详细的流程看代码

def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
    l1 = 0
    l2 = 0
    r1 = len(nums1)
    r2 = len(nums2)
    arr = []
    while True:  # 循环添加
        if l1>r1-1 or l2>r2-1:  # 当有一个数组的数据被添加完成,就跳出循环
            break
        if nums1[l1] > nums2[l2]:
            arr.append(nums2[l2])
            l2+=1
        else:
            arr.append(nums1[l1])
            l1+=1
	# 添加未合并完成的数组
    if l1!=r1:
        arr.extend(nums1[l1:])
    elif l2!=r2:
        arr.extend(nums2[l2:])
    # 根据数组长度的奇偶返回不同的值
    if (r1+r2)%2==0:
        return (arr[((r1+r2)//2)-1]+arr[(r1+r2)//2])/2
    else:
        return arr[(r1+r2)//2]

我们能发现上面这个解题方式中,我们使用了额外的一个数组,浪费了内存空间,因为是两个有序数组,目的又是找出中位数,所以我们可以直接找出中位数,而不用进行合并

思路二 运用归并排序的思想,双指针

这个算法也是用了两个指针,使用情况同第一个类似,只不过我们比较大小后不进行合并,就是用应给变量记录比较的次数,直至比较的次数==中位数的位置,此时我们再根据具体的情况返回具体的值
具体的思路请看代码

def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
    l1 = 0 
    l2 = 0
    r1 = len(nums1)
    r2 = len(nums2)
    number = 0   # 记录次数
    f = 0 # 标志数组是奇数还是偶数
    
    # 根据奇偶设置中间的元素位置
    if (r1+r2)%2==0: 
        f = 2
        mid = (r1+r2)//2   
    else:
        f = 1
        mid = (r1+r2)//2+1
        
    while True:
        if l1>r1-1 or l2>r2-1:
            break
        if nums1[l1] > nums2[l2]: 
            number+=1
            if number == mid: # 当number等于mid的时候就代表此时已经到了中位数的位置
                if f==1:   # 奇数情况
                    return nums2[l2]  
                else:      # 偶数情况
                    if l2==r2-1:  # 此时l2指向其中nums2的最后一个元素
                        return (nums2[l2]+nums1[l1])/2
                    else:
                    	# 返回两种情况中最小的
                        return min(nums2[l2]+nums2[l2+1],nums2[l2]+nums1[l1])/2
            l2+=1 
        else:   # 同上思想一样,对象更换了一下
            number+=1
            if number == mid:
                if f==1:
                    return nums1[l1]
                else:
                    if l1==r1-1:
                        return (nums2[l2]+nums1[l1])/2
                    else:       
                        return min(nums1[l1]+nums1[l1+1],nums2[l2]+nums1[l1])/2
            l1+=1
        
    # 这种是当一个数组特别长,中位数在其中一个数组中的情况
    if l1!=r1:
        if f==1:
            return nums1[mid-l2-1]
        else:
            return (nums1[mid-l2-1]+nums1[mid-l2])/2
    elif l2!=r2:
        if f==1:
            return nums2[mid-l1-1]
        else:
            return (nums2[mid-l1-1]+nums2[mid-l1])/2

此时我们能够发现上面的两种解法的时间复杂度不是 O(log (m+n)),原因就是我们合并和排除数字都是一个一个的进行的 时间复杂度为 O(m+n)
想要实现O(log (m+n))的时间复杂度,我们可以回想一下什么情况出现log二分法,此时我们的思路就明朗了,解题需要使用二分的思想,每次排除的数字,都应该是原数据的二分之一

思路三 使用二分查找法

在这里插入图片描述

在这里插入图片描述

def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
    if len(nums1) > len(nums2):
    	# 保证数组nums1是较短的哪一个
        return self.findMedianSortedArrays(nums2, nums1)

    infinty = 10*6+1  # 
    m, n = len(nums1), len(nums2)
    left, right = 0, m  # 只需要记录记录第一个数组的指针,第二个数组可以计算出来
    # median1:前一部分的最大值
    # median2:后一部分的最小值
    median1, median2 = 0, 0

    while left <= right:   # 循环条件
        # 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]
        # // 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]
        i = (left + right) // 2   # 通过计算确定二分后的中间位置 nums1
        j = (m + n + 1) // 2 - i  # 根据规则计算nums2的需要分的位置
        
       # nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]
        # 四个数字 看数字是否符合条件
        nums_im1 = (-infinty if i == 0 else nums1[i - 1])  # 当i为0时
        nums_i = (infinty if i == m else nums1[i])
        nums_jm1 = (-infinty if j == 0 else nums2[j - 1])  # 当j为0时
        nums_j = (infinty if j == n else nums2[j])

        if nums_im1 <= nums_j: 
        	# 满足这个条件的median1, median2 不一定时最后结果,但是最后结果一定满足这个条件
			# 当出现最后结果 left将不在改变,直至循环结束
            median1, median2 = max(nums_im1, nums_jm1), min(nums_i, nums_j)
            # 取分割线左侧的最大值,取分割线右侧的最小值
            left = i + 1
        else:
            right = i - 1
	# 根据奇偶的不同返回不同的结果
    return (median1 + median2) / 2 if (m + n) % 2 == 0 else median1

最后一个我自己的代码太罗嗦了,就使用的是力扣官方的代码。
具体的讲解请大家移步力扣官方

  数据结构与算法 最新文章
【力扣106】 从中序与后续遍历序列构造二叉
leetcode 322 零钱兑换
哈希的应用:海量数据处理
动态规划|最短Hamilton路径
华为机试_HJ41 称砝码【中等】【menset】【
【C与数据结构】——寒假提高每日练习Day1
基础算法——堆排序
2023王道数据结构线性表--单链表课后习题部
LeetCode 之 反转链表的一部分
【题解】lintcode必刷50题<有效的括号序列
上一篇文章      下一篇文章      查看所有文章
加:2022-10-22 21:39:02  更:2022-10-22 21:40:08 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 19:36:17-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码