IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 游戏开发 -> Halo2 学习笔记——设计之Proving system之Circuit commitments(3) -> 正文阅读

[游戏开发]Halo2 学习笔记——设计之Proving system之Circuit commitments(3)

1. 引言

在创建proof之前,Prover有a table of cell assignments that it claims satisfy the constraint system。该table具有 n = 2 k n=2^k n=2k行,可分为 advice columns、instance columns 以及 fixed columns。
将第 i i i个fixed column中的第 j j j行的assignment定义为 F i , j F_{i,j} Fi,j?,同理,定义advice 和 instance assignment为 A i , j A_{i,j} Ai,j?
【注意,此处将fixed column assignment 与advice/instance column assignment区分的主要原因是:fixed columns由Verifier提供,而advice columns和instance columns 由Prover提供。实际上,instance column 和 fixed column的commitment均由Prover和Verifier计算,仅advice commitment会存储在proof中。】

为了对这些assignment进行commit,需为每列构建degree n ? 1 n-1 n?1 Lagrange polynomials,基于的evaluation domain size 为 n n n(其中 ω \omega ω n n n-th primitive root of unity):

  • a i ( X ) a_i(X) ai?(X) interpolates such that a i ( ω j ) = A i , j a_i(\omega^j) = A_{i,j} ai?(ωj)=Ai,j?.
  • f i ( X ) f_i(X) fi?(X) interpolates such that f i ( ω j ) = F i , j f_i(\omega^j) = F_{i,j} fi?(ωj)=Fi,j?.

然后为每列的polynomial创建blinding commitment:
A = [ Commit ( a 0 ( X ) ) , … , Commit ( a i ( X ) ) ] \mathbf{A} = [\text{Commit}(a_0(X)), \dots, \text{Commit}(a_i(X))] A=[Commit(a0?(X)),,Commit(ai?(X))]
F = [ Commit ( f 0 ( X ) ) , … , Commit ( f i ( X ) ) ] \mathbf{F} = [\text{Commit}(f_0(X)), \dots, \text{Commit}(f_i(X))] F=[Commit(f0?(X)),,Commit(fi?(X))]

F \mathbf{F} F会作为key generation的一部分生成,使用的blinding factor为 1 1 1 A \mathbf{A} A由Prover构建并发送给Verifier。

2. Committing to the lookup permutations

1)首先,Verifier提供sampling challenge θ \theta θ 用于keep individual columns within lookups independent。

2)然后,Prover commits to the permutations for each lookup:

  • 已知a lookup 具有 input column polynomials [ A 0 ( X ) , … , A m ? 1 ( X ) ] [A_0(X), \dots, A_{m-1}(X)] [A0?(X),,Am?1?(X)] 和 table column polynomials [ S 0 ( X ) , … , S m ? 1 ( X ) ] [S_0(X), \dots, S_{m-1}(X)] [S0?(X),,Sm?1?(X)],Prover会构建2个压缩的多项式:
    A compressed ( X ) = θ m ? 1 A 0 ( X ) + θ m ? 2 A 1 ( X ) + ? + θ A m ? 2 ( X ) + A m ? 1 ( X ) A_\text{compressed}(X) = \theta^{m-1} A_0(X) + \theta^{m-2} A_1(X) + \dots + \theta A_{m-2}(X) + A_{m-1}(X) Acompressed?(X)=θm?1A0?(X)+θm?2A1?(X)+?+θAm?2?(X)+Am?1?(X)
    S compressed ( X ) = θ m ? 1 S 0 ( X ) + θ m ? 2 S 1 ( X ) + ? + θ S m ? 2 ( X ) + S m ? 1 ( X ) S_\text{compressed}(X) = \theta^{m-1} S_0(X) + \theta^{m-2} S_1(X) + \dots + \theta S_{m-2}(X) + S_{m-1}(X) Scompressed?(X)=θm?1S0?(X)+θm?2S1?(X)+?+θSm?2?(X)+Sm?1?(X)

  • Prover会根据 lookup argument的rules 来 permutes A compressed ( X ) A_\text{compressed}(X) Acompressed?(X) S compressed ( X ) S_\text{compressed}(X) Scompressed?(X)

3)Prover为所有的lookups创建blinding commitments,并将相应的blinding commitments发送给Verifier。
L = [ ( Commit ( A ′ ( X ) ) ) , Commit ( S ′ ( X ) ) ) , … ? ] \mathbf{L} = \left[ (\text{Commit}(A'(X))), \text{Commit}(S'(X))), \dots \right] L=[(Commit(A(X))),Commit(S(X))),]

4)Verifier收到 A \mathbf{A} A F \mathbf{F} F L \mathbf{L} L之后,发送将用于permutation argument和lookup argument中的random challenges β , γ \beta,\gamma β,γ。(因为2个argument是独立的,因此可复用 β , γ \beta,\gamma β,γ。)

3. Committing to the equality constraint permutation

c c c为the number of columns that are enabled for equality constraints。

m m m为可容纳于column set 中的maximum number of columns,该值不会超过 PLONK配置的polynomial degree bound。

u u u为定义在 Permutation argument 中的 number of “usable” rows。

b = c e i l i n g ( c / m ) b = \mathsf{ceiling}(c/m) b=ceiling(c/m)

1)Prover构建长度为 b u bu bu 的 vector P \mathbf{P} P,对于每一个column set 0 ≤ a < b 0\leq a <b 0a<b和每行 0 ≤ j < u 0\leq j<u 0j<u,有:
P a u + j = ∏ i = a m min ? ( c , ( a + 1 ) m ) ? 1 v i ( ω j ) + β ? δ i ? ω j + γ v i ( ω j ) + β ? s i ( ω j ) + γ . \mathbf{P}_{au + j} = \prod\limits_{i=am}^{\min(c, (a+1)m)-1} \frac{v_i(\omega^j) + \beta \cdot \delta^i \cdot \omega^j + \gamma}{v_i(\omega^j) + \beta \cdot s_i(\omega^j) + \gamma}. Pau+j?=i=ammin(c,(a+1)m)?1?vi?(ωj)+β?si?(ωj)+γvi?(ωj)+β?δi?ωj+γ?.
2)Prover 从 1 1 1开始,计算a running product of P \mathbf{P} P,同时计算a vector of polynomials Z P , 0.. b ? 1 Z_{P,0..b-1} ZP,0..b?1? that each have a Lagrange basis representation corresponding to a u u u-sized slice of this running product,详细参看Permutation argument
3)Prover为每个 Z p , a Z_{p,a} Zp,a?多项式创建blinding commitments,并将这些blinding commitments值发送给Verifier:
Z P = [ Commit ( Z P , 0 ( X ) ) , … , Commit ( Z P , b ? 1 ( X ) ) ] \mathbf{Z_P} = \left[\text{Commit}(Z_{P,0}(X)), \dots, \text{Commit}(Z_{P,b-1}(X))\right] ZP?=[Commit(ZP,0?(X)),,Commit(ZP,b?1?(X))]

4. Committing to the lookup permutation product columns

对于每个lookup,除了需要commit to the individual permuted lookups,Prover还需要commit to the permutation product column:

  • Prover构建a vector P P P
    P j = ( A compressed ( ω j ) + β ) ( S compressed ( ω j ) + γ ) ( A ′ ( ω j ) + β ) ( S ′ ( ω j ) + γ ) P_j = \frac{(A_\text{compressed}(\omega^j) + \beta)(S_\text{compressed}(\omega^j) + \gamma)}{(A'(\omega^j) + \beta)(S'(\omega^j) + \gamma)} Pj?=(A(ωj)+β)(S(ωj)+γ)(Acompressed?(ωj)+β)(Scompressed?(ωj)+γ)?
  • Prover构建a polynomial Z L Z_L ZL?,该polynomial Z L Z_L ZL?具有a Lagrange basis representation corresponding to a running product of P P P,初始有 Z L ( 1 ) = 1 Z_L(1)=1 ZL?(1)=1
  • Verifier收到 A \mathbf{A} A F \mathbf{F} F L \mathbf{L} L(即已commit to all the cell values used in lookup columns和每个lookup的 A ′ ( X ) , S ′ ( X ) A'(X),S'(X) A(X),S(X))之后,发送将用于random challenges β , γ \beta,\gamma β,γ
  • Prover使用 β , γ \beta,\gamma β,γ用于combine the permutation argument for A ′ ( X ) A'(X) A(X) S ′ ( X ) S'(X) S(X)并保持两者独立。
  • Prover为每个 Z L Z_L ZL?多项式创建blinding commitments,并将这些blinding commitments 发送给Verifier:
    Z L = [ Commit ( Z L ( X ) ) , … ? ] \mathbf{Z_L} = \left[\text{Commit}(Z_L(X)), \dots \right] ZL?=[Commit(ZL?(X)),]

参考资料

[1] Halo2 Book 之 circuit commitment

  游戏开发 最新文章
6、英飞凌-AURIX-TC3XX: PWM实验之使用 GT
泛型自动装箱
CubeMax添加Rtthread操作系统 组件STM32F10
python多线程编程:如何优雅地关闭线程
数据类型隐式转换导致的阻塞
WebAPi实现多文件上传,并附带参数
from origin ‘null‘ has been blocked by
UE4 蓝图调用C++函数(附带项目工程)
Unity学习笔记(一)结构体的简单理解与应用
【Memory As a Programming Concept in C a
上一篇文章      下一篇文章      查看所有文章
加:2021-09-26 10:31:04  更:2021-09-26 10:31:34 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 0:08:33-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码