IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 游戏开发 -> 【MR】youBot抓取和移动物体demo源码学习——源码使用了现代机器人学 一书的算法库... -> 正文阅读

[游戏开发]【MR】youBot抓取和移动物体demo源码学习——源码使用了现代机器人学 一书的算法库...

视频演示

77e739ef2736e30bf2444d35caebfe39.png


思维导图

3435c6b6b5af1ded2552487e78115aaf.png

截图

406123cc9e56de4774970fd6c9f04d00.png

查找python位置

a814dbbbaf19caddd6cc7e117189daa5.png

安装numpy

295efceaba02c4ea089446bbb8864d20.png

Home配置时末端执行器位姿

4dc8543ffdcd4fd1b28a607e4cb2eb1b.png

youbot定义

源码:

#main.py
import numpy as np
from TrajectoryGenerator import trajectoryGenerator
from NextState import nextState
from FeedbackControl import feedbackControl


import time
import sys
sys.path.append('./vrep/VREP_remoteAPIs')


#%% VREP control function definition
''' Arm control function of youBot '''
def VREP_armControl(vrep_sim, clientID, arm_joints_handle, desired_arm_joint_angles):
    for i in range(0,5):
        vrep_sim.simxSetJointPosition(clientID, arm_joints_handle[i], desired_arm_joint_angles[i], vrep_sim.simx_opmode_oneshot)


''' Wheels control function of youBot '''
def VREP_wheelsControl(vrep_sim, clientID, wheel_joints_handle, desired_wheel_positions):
    for i in range(0,4):
        vrep_sim.simxSetJointPosition(clientID, wheel_joints_handle[i], desired_wheel_positions[i], vrep_sim.simx_opmode_oneshot)


''' World frame control function of youBot '''
def VREP_WorldFrameControl(vrep_sim, clientID, world_joints_handle, desired_world_positions):
    for i in range(0,3):
        vrep_sim.simxSetJointPosition(clientID, world_joints_handle[i], desired_world_positions[i], vrep_sim.simx_opmode_oneshot)




#%% VREP initialization
try:
    import sim as vrep_sim
except:
    print ('--------------------------------------------------------------')
    print ('"sim.py" could not be imported. This means very probably that')
    print ('either "sim.py" or the remoteApi library could not be found.')
    print ('Make sure both are in the same folder as this file,')
    print ('or appropriately adjust the file "sim.py"')
    print ('--------------------------------------------------------------')
    print ('')


print ('Program started')
vrep_sim.simxFinish(-1) # just in case, close all opened connections
clientID = vrep_sim.simxStart('127.0.0.1',19999,True,True,5000,5) # Connect to CoppeliaSim
if clientID != -1:
    print ('Connected to remote API server')


    return_code, youBot_handle = vrep_sim.simxGetObjectHandle(clientID, 'youBot', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object youBot ok.')


    return_code, youBot_dummy_handle = vrep_sim.simxGetObjectHandle(clientID, 'youBotDummy', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object youBotDummy ok.')


    # Prepare initial values for four wheels
    wheel_joints_handle = [-1,-1,-1,-1]; # front left, rear left, rear right, front right
    return_code, wheel_joints_handle[0] = vrep_sim.simxGetObjectHandle(clientID, 'rollingJoint_fl', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object youBot rollingJoint_rl ok.')


    return_code, wheel_joints_handle[1] = vrep_sim.simxGetObjectHandle(clientID, 'rollingJoint_fr', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object youBot rollingJoint_fl ok.')


    return_code, wheel_joints_handle[2] = vrep_sim.simxGetObjectHandle(clientID, 'rollingJoint_rr', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object youBot rollingJoint_fr ok.')
    
    return_code, wheel_joints_handle[3] = vrep_sim.simxGetObjectHandle(clientID, 'rollingJoint_rl', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object youBot rollingJoint_rr ok.')


    # Prepare initial values for five arm joints
    arm_joints_handle = [-1,-1,-1,-1,-1]
    for i in range(0,5):
        return_code, arm_joints_handle[i] = vrep_sim.simxGetObjectHandle(clientID, 'Joint' + str(i+1), vrep_sim.simx_opmode_blocking)
        if (return_code == vrep_sim.simx_return_ok):
            print('get object arm joint ' + str(i+1) + ' ok.')
    
    return_code, gripper_joint_1_handle = vrep_sim.simxGetObjectHandle(clientID, 'youBotGripperJoint1', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object gripper joint 1 ok')


    return_code, gripper_joint_2_handle = vrep_sim.simxGetObjectHandle(clientID, 'youBotGripperJoint2', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object gripper joint 2 ok')


    return_code, gripper_tip_handle = vrep_sim.simxGetObjectHandle(clientID, 'youBot_positionTip', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object gripper position tip ok')


    # Desired joint positions for initialization
    desired_arm_joint_angles = [0, 0, 0, 0, 0]
    
    # Initialization all arm joints
    for i in range(0,5):
        vrep_sim.simxSetJointPosition(clientID, arm_joints_handle[i], desired_arm_joint_angles[i], vrep_sim.simx_opmode_blocking)


    # Get world joints handles
    world_joints_handle = [-1, -1, -1]
    return_code, world_joints_handle[0] = vrep_sim.simxGetObjectHandle(clientID, 'World_X_Joint', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object world joint X ok.')


    return_code, world_joints_handle[1] = vrep_sim.simxGetObjectHandle(clientID, 'World_Y_Joint', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object world joint Y ok.')


    return_code, world_joints_handle[2] = vrep_sim.simxGetObjectHandle(clientID, 'World_Th_Joint', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object world joint Th ok.')


    # Get initial and goal cube handles
    return_code, cube_1_handle = vrep_sim.simxGetObjectHandle(clientID, 'Cube_1', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object cube_1 ok.')


    return_code, cube_2_handle = vrep_sim.simxGetObjectHandle(clientID, 'Cube_2', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object cube_2 ok.')


    return_code, cube_goal_handle = vrep_sim.simxGetObjectHandle(clientID, 'Cube_goal', vrep_sim.simx_opmode_blocking)
    if (return_code == vrep_sim.simx_return_ok):
        print('get object cube_goal_1 ok.')
else:
    print ('Failed connecting to remote API server')




#%% ---------------------- generate trajectory and control the robot ---------------------------
# Get initial and goal cube positions
_, cube_1_position = vrep_sim.simxGetObjectPosition(clientID, cube_1_handle, -1, vrep_sim.simx_opmode_blocking)
_, cube_2_position = vrep_sim.simxGetObjectPosition(clientID, cube_2_handle, -1, vrep_sim.simx_opmode_blocking)
_, cube_goal_position = vrep_sim.simxGetObjectPosition(clientID, cube_goal_handle, -1, vrep_sim.simx_opmode_blocking)




for i in range (0,2):
    # Get youBot position
    _, youBot_position = vrep_sim.simxGetObjectPosition(clientID, youBot_handle, -1, vrep_sim.simx_opmode_blocking)
    _, youBot_x = vrep_sim.simxGetJointPosition(clientID, world_joints_handle[0], vrep_sim.simx_opmode_blocking)
    _, youBot_y = vrep_sim.simxGetJointPosition(clientID, world_joints_handle[1], vrep_sim.simx_opmode_blocking)
    _, youBot_phi = vrep_sim.simxGetJointPosition(clientID, world_joints_handle[2], vrep_sim.simx_opmode_blocking)


    # Get youBot arm joint angles
    youBot_arm_q = [0, 0, 0, 0, 0]
    for j in range(0, 5):
        _, youBot_arm_q[j] = vrep_sim.simxGetJointPosition(clientID, arm_joints_handle[j], vrep_sim.simx_opmode_blocking)


    # Get youBot wheel angles
    youBot_wheel_angles = [0, 0, 0, 0]
    for j in range(0, 4):
        _, youBot_wheel_angles[j] = vrep_sim.simxGetJointPosition(clientID, wheel_joints_handle[j], vrep_sim.simx_opmode_blocking)


    # Get youBot gripper position
    _, youBot_gripper_position = vrep_sim.simxGetObjectPosition(clientID, gripper_tip_handle, -1, vrep_sim.simx_opmode_blocking)


    # Initialize the robot's configuration
    #                         phi x  y  J1 J2 J3 J4 J5 w1 w2 w3 w4 gripper
    config_initial = np.array([youBot_phi, youBot_x, youBot_y, youBot_arm_q[0], youBot_arm_q[1], youBot_arm_q[2], youBot_arm_q[3], youBot_arm_q[4], youBot_wheel_angles[0], youBot_wheel_angles[1], youBot_wheel_angles[2], youBot_wheel_angles[3], 0]).reshape(1,13)


    # Generate trajectory
    T_se_initial = np.array([[0,0,1,youBot_gripper_position[0]],[0,1,0,youBot_gripper_position[1]],[-1,0,0,youBot_gripper_position[2]],[0,0,0,1]])
    if i == 0:
        T_sc_initial = np.array([[1,0,0,cube_1_position[0]],[0,1,0,cube_1_position[1]],[0,0,1,cube_1_position[2]],[0,0,0,1]])
        T_sc_final = np.array([[0,1,0,cube_goal_position[0]],[-1,0,0,cube_goal_position[1]],[0,0,1, cube_goal_position[2]],[0,0,0,1]])
    else:
        T_sc_initial = np.array([[1,0,0,cube_2_position[0]],[0,1,0,cube_2_position[1]],[0,0,1,cube_2_position[2]],[0,0,0,1]])
        T_sc_final = np.array([[0,1,0,cube_goal_position[0]],[-1,0,0,cube_goal_position[1]],[0,0,1, cube_goal_position[2] + 0.05],[0,0,0,1]])
    gripper_pose = np.pi/3 # change orientation of the gripper, default value is pi/4
    T_ce_grasp = np.array([[-np.sin(gripper_pose), 0, np.cos(gripper_pose),0],[0,1,0,0],[-np.cos(gripper_pose), 0, -np.sin(gripper_pose),0],[0,0,0,1]])
    T_ce_standoff = np.array([[-np.sin(gripper_pose), 0, np.cos(gripper_pose),0],[0,1,0,0],[-np.cos(gripper_pose), 0, -np.sin(gripper_pose),0.1],[0,0,0,1]])


    k = 1
    T_se_post = trajectoryGenerator(T_se_initial,T_sc_initial,T_sc_final,T_ce_grasp,T_ce_standoff,k)


    # set to use joint limits
    joint_limit = 0  #不用关节限制。若使用设置为1,在feedbackControl模块中将机械臂J3,J4 在> -0.1 置为0


    # set Kp, Ki and dt
    Kp = 2.2
    Ki = 0
    dt = 0.01


    #%% ------------------------------------- main loop --------------------------------------
    desired_wheel_positions = [0,0,0,0]
    desired_world_positions = [0,0,0]
    reference_trajectory = []
    reference_trajectory.append(config_initial)
    new_config = config_initial


    print('begin main control loop ...')
    for i in np.arange(np.shape(T_se_post)[0]-1):
        # write down Xd
        Xd = np.array([[T_se_post[i,0],T_se_post[i,1],T_se_post[i,2],T_se_post[i,9]],[T_se_post[i,3],T_se_post[i,4],T_se_post[i,5],T_se_post[i,10]],[T_se_post[i,6],T_se_post[i,7],T_se_post[i,8],T_se_post[i,11]],[0,0,0,1]])


        # write down Xd_next
        Xd_next = np.array([[T_se_post[i+1,0],T_se_post[i+1,1],T_se_post[i+1,2],T_se_post[i+1,9]],[T_se_post[i+1,3],T_se_post[i+1,4],T_se_post[i+1,5],T_se_post[i+1,10]],[T_se_post[i+1,6],T_se_post[i+1,7],T_se_post[i+1,8],T_se_post[i+1,11]],[0,0,0,1]])


        # compute speeds and X_err
        V, speeds, X_err = feedbackControl(new_config, Xd, Xd_next, Kp, Ki, dt, joint_limit)


        # adjust the order of wheels speeds and joints speeds
        speeds = np.array([speeds[4], speeds[5], speeds[6], speeds[7], speeds[8], speeds[0], speeds[1], speeds[2], speeds[3]]).reshape(1,9)
        speeds_max = 1000


        # compute new configuration
        new_config = nextState(new_config,speeds,dt,speeds_max)
        new_config = np.append(new_config,[[T_se_post[i,12]]],axis=1)
        print(new_config)
        reference_trajectory.append(new_config) # record the trajectory


        # set commands for the youBot model in VREP
        desired_world_positions[0] = new_config[0, 1]
        desired_world_positions[1] = new_config[0, 2]
        desired_world_positions[2] = new_config[0, 0]
        
        desired_arm_joint_angles[0] = new_config[0, 3]
        desired_arm_joint_angles[1] = new_config[0, 4]
        desired_arm_joint_angles[2] = new_config[0, 5]
        desired_arm_joint_angles[3] = new_config[0, 6]
        desired_arm_joint_angles[4] = new_config[0, 7]


        desired_wheel_positions[0] = new_config[0, 8]
        desired_wheel_positions[1] = new_config[0, 9]
        desired_wheel_positions[2] = new_config[0, 10]
        desired_wheel_positions[3] = new_config[0, 11]


        # send commands to VREP
        VREP_armControl(vrep_sim, clientID, arm_joints_handle, desired_arm_joint_angles)
        VREP_wheelsControl(vrep_sim, clientID, wheel_joints_handle, desired_wheel_positions)
        VREP_WorldFrameControl(vrep_sim, clientID, world_joints_handle, desired_world_positions)


        # set gripper state
        if new_config[0, 12] == 0:
            vrep_sim.simxSetJointTargetVelocity(clientID, gripper_joint_2_handle, -0.04, vrep_sim.simx_opmode_oneshot) # open
        else:
            vrep_sim.simxSetJointTargetVelocity(clientID, gripper_joint_2_handle, 0.04, vrep_sim.simx_opmode_oneshot) # close
        return_code, gripper_joint_2_position = vrep_sim.simxGetJointPosition(clientID, gripper_joint_2_handle, vrep_sim.simx_opmode_oneshot)
        vrep_sim.simxSetJointTargetPosition(clientID, gripper_joint_1_handle, -gripper_joint_2_position, vrep_sim.simx_opmode_oneshot)
        time.sleep(0.002)


    # Squeeze reference trajectory
    reference_trajectory = np.squeeze(reference_trajectory)


# Stop VREP simulation
#print ('Stop VREP simulation')
#vrep_sim.simxStopSimulation(clientID, vrep_sim.simx_opmode_blocking)
time.sleep(0.1)


# Now close the connection to VREP
vrep_sim.simxFinish(clientID)
print?('Program?ended')
#TrajectoryGenerator.py
import numpy as np
import modern_robotics as mr


def trajectoryGenerator(T_se_initial, T_sc_initial, T_sc_final, T_ce_grasp, T_ce_standoff, k):
    # ---------------------------------
    # segment 1: A trajectory to move the gripper from its initial configuration to a "standoff" configuration a few cm above the block
    # represent the frame of end-effector when standoff in space frame
    T_se_standoff_initial = T_sc_initial.dot(T_ce_standoff)
    # generate trajectory when approaching the standoff position in segment 1
    T_se_segment_1 = mr.CartesianTrajectory(T_se_initial,T_se_standoff_initial,5,5/0.01,3)
    
    # ---------------------------------
    # segment 2: A trajectory to move the gripper down to the grasp position
    # represent the frame of end-effecto    r in space frame in segment 2
    T_se_grasp = T_sc_initial.dot(T_ce_grasp)
    # generate trajectory when approaching the grasping position in segment 2
    T_se_seg2 = mr.CartesianTrajectory(T_se_segment_1[-1], T_se_grasp, 2, 2/0.01, 3)
    # append the trajectory of segment 2 after segment 1
    T_se_before = np.append(T_se_segment_1, T_se_seg2, axis=0)


    # ---------------------------------
    # segment 3: Closing of the gripper
    # append the trajectory of segment 3 by 63 times
    for i in np.arange(64):
        T_se_before = np.append(T_se_before,np.array([T_se_before[-1]]),axis=0)
    
    # ---------------------------------
    # segment 4: A trajectory to move the gripper back up to the "standoff" configuration
    # generate trajectory when back on the standoff position in segment 4
    T_se_segment_4 = mr.CartesianTrajectory(T_se_grasp, T_se_standoff_initial, 2, 2/0.01, 3)
    # append the trajectory of segment 4
    T_se_before = np.append(T_se_before,T_se_segment_4,axis=0)


    # ---------------------------------
    # segment 5: A trajectory to move the gripper to a "standoff" configuration above the final configuration
    # generate trajectory when moving to the final standoff position in segment 5
    T_se_standoff_final = T_sc_final.dot(T_ce_standoff)
    T_se_segment_5 = mr.CartesianTrajectory(T_se_standoff_initial, T_se_standoff_final, 8, 8/0.01, 3)
    # append the trajectory of segment 5
    T_se_before = np.append(T_se_before, T_se_segment_5, axis=0)


    # ---------------------------------
    # segment 6: A trajectory to move the gripper to the final configuration of the object
    # generate the end-effector configuration when losing
    T_se_lose = T_sc_final.dot(T_ce_grasp)
    # generate trajectory when moving to the final cube position in segment 6
    T_se_segment_6 = mr.CartesianTrajectory(T_se_standoff_final, T_se_lose, 2, 2/0.01, 3)
    # append the trajectory of segment 6
    T_se_before = np.append(T_se_before, T_se_segment_6, axis=0)


    # ---------------------------------
    # segment 7: Opening of the gripper
    # append the trajectory of segment 7 by 63 times
    for i in np.arange(64):
        T_se_before = np.append(T_se_before, np.array([T_se_before[-1]]), axis=0)
    
    # ---------------------------------
    # segment 8: A trajectory to move the gripper back to the "standoff" configuration
    # generate trajectory when moving to the final standoff position in segment 8
    T_se_segment_8 = mr.CartesianTrajectory(T_se_before[-1], T_se_standoff_final, 2, 2/0.01, 3)
    # append the trajectory of segment 8
    T_se_before = np.append(T_se_before, T_se_segment_8, axis=0)


    # ---------------------------------
    # generate a matrix which is n by 13
    T_se_post = np.zeros([int(k*21/0.01+64*2),13])
    # put the configuration, position and gripper state in matrix which is n by 13
    for i in np.arange(int(k*21/0.01+64*2)):
        T_se_post[i,0] = T_se_before[i,0,0]
        T_se_post[i,1] = T_se_before[i,0,1]
        T_se_post[i,2] = T_se_before[i,0,2]
        T_se_post[i,3] = T_se_before[i,1,0]
        T_se_post[i,4] = T_se_before[i,1,1]
        T_se_post[i,5] = T_se_before[i,1,2]
        T_se_post[i,6] = T_se_before[i,2,0]
        T_se_post[i,7] = T_se_before[i,2,1]
        T_se_post[i,8] = T_se_before[i,2,2]
        T_se_post[i,9] = T_se_before[i,0,3]
        T_se_post[i,10] = T_se_before[i,1,3]
        T_se_post[i,11] = T_se_before[i,2,3]
        T_se_post[i,12] = 0
    # amend the gripper state in segment 3, 4, 5, 6
    for i in np.arange(int(k*7/0.01), int(k*19/0.01+64)):
        T_se_post[i, 12] = 1


    return T_se_post
#FeedbackControl.py
import numpy as np
import modern_robotics as mr
from JointLimits import jointLimits


def feedbackControl(config, Xd, Xd_next, Kp, Ki, dt, jointlimit):
    # here we compute X
    M = np.array([[1,0,0,0.033],[0,1,0,0],[0,0,1,0.6546],[0,0,0,1]])
    Blist = np.array([[0,0,1,0,0.033,0],[0,-1,0,-0.5076,0,0],[0,-1,0,-0.3526,0,0],[0,-1,0,-0.2176,0,0],[0,0,1,0,0,0]]).T
    Tb0 = np.array([[1,0,0,0.1662],[0,1,0,0],[0,0,1,0.0026],[0,0,0,1]])
    thetalist_initial = np.array([config[0,3],config[0,4],config[0,5],config[0,6],config[0,7]])
    T_sb_initial = np.array([[np.cos(config[0,0]),-np.sin(config[0,0]),0,config[0,1]],[np.sin(config[0,0]),np.cos(config[0,0]),0,config[0,2]],[0,0,1,0.0963],[0,0,0,1]])
    X = T_sb_initial.dot(Tb0).dot(mr.FKinBody(M,Blist,thetalist_initial))


    # here we write down Vd
    Vd = mr.se3ToVec((1/dt)*mr.MatrixLog6(np.linalg.inv(Xd).dot(Xd_next)))


    # here we write down Vb = Ad*Vd
    Vb = mr.Adjoint(np.linalg.inv(X).dot(Xd)).dot(Vd)


    # here we write down X_err
    X_err = mr.se3ToVec(mr.MatrixLog6(np.linalg.inv(X).dot(Xd)))
    
    # here we write down commanded twist
    V = Vb+Kp*X_err+Ki*(X_err+X_err*dt)


    # here we compute J_e
    # first we write down J_arm
    Blist = np.array([[0,0,1,0,0.033,0],[0,-1,0,-0.5076,0,0],[0,-1,0,-0.3526,0,0],[0,-1,0,-0.2176,0,0],[0,0,1,0,0,0]]).T
    thetalist = np.array([config[0,3],config[0,4],config[0,5],config[0,6],config[0,7]])
    J_arm = mr.JacobianBody(Blist,thetalist)
    # second we write down J_base
    r = 0.0475
    l = 0.47/2
    w = 0.3/2
    gamma1 = -np.pi/4
    gamma2 = np.pi/4
    gamma3 = -np.pi/4
    gamma4 = np.pi/4
    beta = 0
    x1 = l
    y1 = w
    x2 = l
    y2 = -w
    x3 = -l
    y3 = -w
    x4 = -l
    y4 = w
    # here we write down F6
    a1 = np.array([1,np.tan(gamma1)])
    a2 = np.array([1,np.tan(gamma2)])
    a3 = np.array([1,np.tan(gamma3)])
    a4 = np.array([1,np.tan(gamma4)])
    b = np.array([[np.cos(beta),np.sin(beta)],[-np.sin(beta),np.cos(beta)]])
    c1 = np.array([[-y1,1,0],[x1,0,1]])
    c2 = np.array([[-y2,1,0],[x2,0,1]])
    c3 = np.array([[-y3,1,0],[x3,0,1]])
    c4 = np.array([[-y4,1,0],[x4,0,1]])
    h1 = (((1/r)*a1).dot(b)).dot(c1)
    h2 = (((1/r)*a2).dot(b)).dot(c2)
    h3 = (((1/r)*a3).dot(b)).dot(c3)
    h4 = (((1/r)*a4).dot(b)).dot(c4)
    H0 = np.vstack((h1,h2,h3,h4))
    F = np.linalg.pinv(H0)
    F6 = np.array([[0,0,0,0],[0,0,0,0],[F[0,0],F[0,1],F[0,2],F[0,3]],[F[1,0],F[1,1],F[1,2],F[1,3]],[F[2,0],F[2,1],F[2,2],F[2,3]],[0,0,0,0]])


    # then write down J_base
    T_sb = np.array([[np.cos(config[0,0]),-np.sin(config[0,0]),0,config[0,1]],[np.sin(config[0,0]),np.cos(config[0,0]),0,config[0,2]],[0,0,1,0.0963],[0,0,0,1]])
    T_eb = np.linalg.inv(X).dot(T_sb)
    J_base = mr.Adjoint(T_eb).dot(F6)


    # here we test joint limits
    if jointlimit == 1:
        jointLimits(config,J_arm)


    # finally we write down J_e
    J_e = np.hstack((J_base,J_arm))


    # here we write down speeds (u,thetadot)
    speeds = np.linalg.pinv(J_e,rcond=1e-2).dot(V)


    return V, speeds, X_err
#NextState.py
import numpy as np


def nextState(config,speed,delta_t,speed_max):
    # here we limit speed
    for j in np.arange(np.shape(speed)[1]):
        if speed[0,j]>speed_max:
            speed[0,j] = speed_max
        elif speed[0,j]<-speed_max:
            speed[0,j] = -speed_max


    # here we get the new arm and wheels configurations
    new_angle_config = config[0,3:12]+speed*delta_t


    # here we start to compute the configuration of chassis using odometry
    # step1: compute delta theta, which is the change of wheels rotation
    delta_theta = (speed[0,5:].reshape(1,4)).T*delta_t
    
    # step2: compute the wheels velocities
    theta_dot = delta_theta


    # step3: compute chassis planar twist Vb
    # here we write down some necessary parameters for step3
    r = 0.0475
    l = 0.47/2
    w = 0.3/2
    Vb = (r/4)*np.array([[-1/(l+w),1/(l+w),1/(l+w),-1/(l+w)],[1,1,1,1],[-1,1,-1,1]]).dot(theta_dot)


    # step4: calculate new chassis config
    # here we write down dqb
    if Vb[0,0] == 0:
        dqb = np.array([[0],[Vb[1,0]],[Vb[2,0]]])
    elif Vb[0,0] != 0:
        dqb = np.array([[Vb[0,0]],[(Vb[1,0]*np.sin(Vb[0,0])+Vb[2,0]*(np.cos(Vb[0,0])-1))/Vb[0,0]],[(Vb[2,0]*np.sin(Vb[0,0])+Vb[1,0]*(1-np.cos(Vb[0,0])))/Vb[0,0]]])
    # here we write down dq
    dq = np.array([[1,0,0],[0,np.cos(config[0,0]),-np.sin(config[0,0])],[0,np.sin(config[0,0]),np.cos(config[0,0])]]).dot(dqb)
    # here we write down new chassis config
    new_chassis_config = config[0,0:3].reshape(1,3)+dq.reshape(1,3)


    # here we put the angle and chassis configuration together
    new_config = np.hstack((new_chassis_config,new_angle_config))
    
????return?new_config
#jointLimits.py
import numpy as np


def jointLimits(config,J_arm):
    if config[0,5] > -0.1:
        J_arm[:,2] = np.array([0,0,0,0,0,0])
    if config[0,6] > -0.1:
        J_arm[:,3] = np.array([0,0,0,0,0,0])

94a9c6c1e7011adc3eb39ae7cddf500b.png

注释截图

MR API笔记

笛卡尔轨迹生成:

traj =CartesianTrajectory(Xstart,Xend,Tf,N,method)

输入:

Xstart: 初始末端执行器配置Xstart ∈ SE(3).

Xend: 最终末端执行器配置Xend.

Tf: 从静止到静止的运动总时间 Tf(以秒为单位)。

N: 轨迹离散表示中的点数 N≥2。

method:时间标度方法,其中 3 表示三次(三阶多项式)时间标度

5 表示五次(五阶多项式)时间标度。

输出:

traj: 离散化的轨迹,作为SE(3) 中 N 个矩阵的列表,在时间上由 Tf /(N-1) 分隔。列表中的第一个是 Xstart,第 N 个是 Xend。

正向运动学(物体坐标系):

T = FKinBody(M,Blist,thetalist)

输入:

M: 末端执行器的home配置

Blist: The joint screw axes in theend-effector frame when the manipulator is at the home position. 机械手在home时末端执行器坐标系中的关节螺旋轴

thetalist: 关节坐标值列表。

输出:

T: The T ∈ SE(3) representing theend-effector frame when the joints are at the specified coordinates. T ∈ SE(3) 表示关节在指定坐标值时的末端执行器坐标系位姿。

?9d507da0bd5ad742e513cf34b79aab26.png2d67afc4d5114454f06b23f953d8f38d.png

se3mat = MatrixLog6(T)

输入:

T: Transformation matrix. 变换矩阵

输出:

se3mat: The corresponding se(3)representation of exponential coordinates. 指数坐标的相应se(3) 表示。

e6855c464f99bfd5e851239a8298b706.png

AdT = Adjoint(T)

输入:

T:变换矩阵

输出:

AdT: The corresponding 6 × 6 adjointrepresentation [AdT ].

V = se3ToVec(se3mat)

输入:

se3mat: A 4 × 4 se(3) matrix.

输出:

V: The corresponding 6-vecto

控制律:

9ed60b48b74635b36f8cef070795f176.png

备注:其他公式参考书中第十三章内容。

参考:

https://blog.csdn.net/shakehands2012/article/details/109233371?spm=1001.2014.3001.5501

https://github.com/chauby/V-REP-YouBot-Demo

  游戏开发 最新文章
6、英飞凌-AURIX-TC3XX: PWM实验之使用 GT
泛型自动装箱
CubeMax添加Rtthread操作系统 组件STM32F10
python多线程编程:如何优雅地关闭线程
数据类型隐式转换导致的阻塞
WebAPi实现多文件上传,并附带参数
from origin ‘null‘ has been blocked by
UE4 蓝图调用C++函数(附带项目工程)
Unity学习笔记(一)结构体的简单理解与应用
【Memory As a Programming Concept in C a
上一篇文章      下一篇文章      查看所有文章
加:2022-02-14 21:31:23  更:2022-02-14 21:32:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 13:56:13-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码