IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 游戏开发 -> Free Radicals Antioxidants in Disease and Health解读 -> 正文阅读

[游戏开发]Free Radicals Antioxidants in Disease and Health解读

The human body has several mechanisms to counteract oxidative stress by producing antioxidants, which are either naturally produced in situ, or externally supplied through foods and/or supplements. (人体有几种机制通过产生抗氧化剂来对抗氧化应激,这些抗氧化剂要么在原位自然产生,要么通过食物和/或补充剂从外部提供。)

Oxygen is an element indispensable for life. When cells use oxygen to generate energy, free radicals are created as a consequence of ATP (adenosine triphosphate) production by the mitochondria. These by-products are generally reactive oxygen species (ROS) as well as reactive nitrogen species (RNS) that result from the cellular redox process. These species play a dual role as both toxic and beneficial compounds. The delicate balance between their two antagonistic effects is clearly an important aspect of life. At low or moderate levels, ROS and RNS exert beneficial effects on cellular responses and immune function. At high concentrations, they generate oxidative stress, a deleterious process that can damage all cell structures (1-10). Oxidative stress plays a major part in the development of chronic and degenerative ailments such as cancer, arthritis, aging, autoimmune disorders, cardiovascular and neurodegenerative diseases. The human body has several mechanisms to counteract oxidative stress by producing antioxidants, which are either naturally produced in situ, or externally supplied through foods and/or supplements. Endogenous and exogenous antioxidants act as “free radical scavengers” by preventing and repairing damages caused by ROS and RNS, and therefore can enhance the immune defense and lower the risk of cancer and degenerative diseases (11-15).

(氧气是生命不可缺少的元素。当细胞利用氧气产生能量时,线粒体产生的ATP(三磷酸腺苷)会产生自由基。这些副产物通常是细胞氧化还原过程产生的活性氧物种(ROS)和活性氮物种(RNS)。这些物种扮演着有毒和有益化合物的双重角色。这两种对立效应之间的微妙平衡显然是生活的一个重要方面。在低或中等水平下,ROS和RNS对细胞反应和免疫功能发挥有益作用。在高浓度下,它们会产生氧化应激,这是一个有害的过程,会破坏所有细胞结构(1-10)。氧化应激在癌症、关节炎、衰老、自身免疫性疾病、心血管和神经退行性疾病等慢性和退行性疾病的发展中起着重要作用。人体有几种机制通过产生抗氧化剂来对抗氧化应激,这些抗氧化剂要么在原位自然产生,要么通过食物和/或补充剂从外部提供。内源性和外源性抗氧化剂作为“自由基清除剂”,通过预防和修复ROS和RNS造成的损伤,因此可以增强免疫防御,降低癌症和退行性疾病的风险)

CHARACTERISTICS OF FREE RADICALS AND OXIDANTS
ROS and RNS are the terms collectively describing free radicals and other non-radical reactive derivatives also called oxidants. Radicals are less stable than non-radical species, although their reactivity is generally stronger.

(自由基和氧化剂的特性

ROS和RNS是自由基和其他非自由基反应性衍生物(也称为氧化剂)的统称。自由基的稳定性不如非自由基物种,尽管它们的反应性通常更强。)

A molecule with one or more unpaired electron in its outer shell is called a free radical (1-5). Free radicals are formed from molecules via the breakage of a chemical bond such that each fragment keeps one electron, by cleavage of a radical to give another radical and, also via redox reactions (1, 2). Free radicals include hydroxyl (OH?), superoxide (O2?–), nitric oxide (NO?), nitrogen dioxide (NO2?), peroxyl (ROO?) and lipid peroxyl (LOO?). Also, hydrogen peroxide (H2O2), ozone (O3), singlet oxygen (1O2), hypochlorous acid (HOCl), nitrous acid (HNO2), peroxynitrite (ONOO–), dinitrogen trioxide (N2O3), lipid peroxide (LOOH), are not free radicals and generally called oxidants, but can easily lead to free radical reactions in living organisms (8). Biological free radicals are thus highly unstable molecules that have electrons available to react with various organic substrates such as lipids, proteins, DNA.(外壳中含有一个或多个未配对电子的分子称为自由基(1-5)。自由基是由分子通过化学键的断裂形成的,每个片段保留一个电子,通过一个自由基的断裂产生另一个自由基,也通过氧化还原反应(1,2)。自由基包括羟基(OH?)、超氧物(O2?–)、一氧化氮(NO?)、二氧化氮(NO2?)、过氧物(ROO?)和脂质过氧物(LOO?)。此外,过氧化氢(H2O2)、臭氧(O3)、单线态氧(1O2)、次氯酸(HOCl)、亚硝酸(HNO2)、过氧亚硝酸盐(ONOO-)、三氧化二氮(N2O3)、过氧化脂质(LOOH)不是自由基,通常被称为氧化剂,但很容易导致生物体内的自由基反应(8)。因此,生物自由基是高度不稳定的分子,其电子可与各种有机基质(如脂质、蛋白质、DNA)反应)

GENERATION OF FREE RADICALS AND OXIDANTS
Formation of ROS and RNS can occur in the cells by two ways: enzymatic and non-enzymatic reactions. Enzymatic reactions generating free radicals include those involved in the respiratory chain, the phagocytosis, the prostaglandin synthesis and the cytochrome P450 system (1-9). For example, the superoxide anion radical (O2?–) is generated via several cellular oxidase systems such as NADPH oxidase, xanthine oxidase, peroxidases. Once formed, it participates in several reactions yielding various ROS and RNS such as hydrogen peroxide, hydroxyl radical (OH?), peroxynitrite (ONOO–), hypochlorous acid (HOCl), etc. H2O2 (a non radical) is produced by the action of several oxidase enzymes, including aminoacid oxidase and xanthine oxidase. The last one catalyses the oxidation of hypoxanthine to xanthine, and of xanthine to uric acid. Hydroxyl radical (OH?), the most reactive free radical in vivo, is formed by the reaction of O2?– with H2O2 in the presence of Fe2+ or Cu+ (catalyst). This reaction is known as the Fenton reaction (3-8). Hypochlorous acid (HOCl) is produced by the neutrophil-derived enzyme, myeloperoxidase, which oxidizes chloride ions in the presence of H2O2. Nitric oxide radical (NO?) is formed in biological tissues from the oxidation of L-arginine to citrulline by nitric oxide synthase

(自由基和氧化剂的产生

ROS和RNS的形成可以通过两种方式在细胞中发生:酶促反应和非酶促反应。产生自由基的酶反应包括呼吸链、吞噬、前列腺素合成和细胞色素P450系统(1-9)中的反应。例如,超氧阴离子自由基(O2?–)通过几种细胞氧化酶系统产生,如NADPH氧化酶、黄嘌呤氧化酶、过氧化物酶。一旦形成,它就参与产生各种ROS和RNS的几个反应,如过氧化氢、羟基自由基(OH?)、过氧亚硝酸盐(ONOO-)、次氯酸(HOCl)等。H2O2(一种非自由基)是由几种氧化酶作用产生的,包括氨基酸氧化酶和黄嘌呤氧化酶。最后一种催化次黄嘌呤氧化为黄嘌呤,黄嘌呤氧化为尿酸。羟基自由基(OH?)是体内最具活性的自由基,由O2?–在Fe2+或Cu+(催化剂)存在下与H2O2反应形成。这种反应称为芬顿反应(3-8)。次氯酸(HOCl)由中性粒细胞衍生的酶髓过氧化物酶产生,该酶在H2O2存在下氧化氯离子。一氧化氮自由基(NO?)由一氧化氮合酶(3-8)将L-精氨酸氧化为瓜氨酸,在生物组织中形成。)

ROS and RNS are generated from either endogenous or exogenous sources. Endogenous free radicals are generated from immune cell activation, inflammation, mental stress, excessive exercise, ischemia, infection, cancer, aging. Exogenous ROS/RNS result from air and water pollution, cigarette smoke, alcohol, heavy or transition metals (Cd, Hg, Pb, Fe, As), certain drugs (cyclosporine, tacrolimus, gentamycin, bleomycin), industrial solvents, cooking (smoked meat, used oil, fat), radiation. (4-14). After penetration into the body by different routes, these exogenous compounds are decomposed or metabolized into free radicals.(ROS和RNS来自内源性或外源性来源。内源性自由基是由免疫细胞激活、炎症、精神压力、过度运动、缺血、感染、癌症、衰老产生的。外源性ROS/RNS源于空气和水污染、香烟烟雾、酒精、重金属或过渡金属(镉、汞、铅、铁、砷)、某些药物(环孢素、他克莫司、庆大霉素、博莱霉素)、工业溶剂、烹饪(熏肉、废油、脂肪)、辐射。(4-14). 通过不同途径进入人体后,这些外源性化合物被分解或代谢成自由基。)

BENEFICIAL ACTIVITIES OF FREE RADICALS AND OXIDANTS
At low or moderate concentrations, ROS and RNS are necessary for the maturation process of cellular structures and can act as weapons for the host defense system. Indeed, phagocytes (neutrophils, macrophages, monocytes) release free radicals to destroy invading pathogenic microbes as part of the body’s defense mechanism against disease (5, 10). The importance of ROS production by the immune system is clearly exemplified by patients with granulomatous disease. These patients have defective membrane-bound NADPH oxidase system which makes them unable to produce the superoxide anion radical (O2?–), thereby resulting in multiple and persistent infection (4, 5). Other beneficial effects of ROS and RNS involve their physiological roles in the function of a number of cellular signaling systems (7-9). Their production by nonphagocytic NADPH oxidase isoforms plays a key role in the regulation of intracellular signaling cascades in various types of nonphagocytic cells including fibroblasts, endothelial cells, vascular smooth muscle cells, cardiac myocytes, and thyroid tissue. For example, nitric oxide (NO) is an intercellular messenger for modulating blood flow, thrombosis, and neural activity (7). NO is also important for nonspecific host defense, and for killing intracellular pathogens and tumors. Another beneficial activity of free radicals is the induction of a mitogenic response (7, 8). In brief, ROS/RNS at low or moderate levels are vital to human health.(自由基和氧化剂的有益活性,在低或中等浓度下,ROS和RNS对细胞结构的成熟过程是必需的,可以作为宿主防御系统的武器。事实上,吞噬细胞(中性粒细胞、巨噬细胞、单核细胞)释放自由基,摧毁入侵的病原微生物,这是身体抵御疾病的防御机制的一部分(5,10)。肉芽肿性疾病患者清楚地证明了免疫系统产生活性氧的重要性。这些患者的膜结合NADPH氧化酶系统存在缺陷,使他们无法产生超氧阴离子自由基(O2?–),从而导致多发性和持续性感染(4,5)。ROS和RNS的其他有益作用涉及它们在许多细胞信号系统功能中的生理作用(7-9)。它们由非吞噬性NADPH氧化酶亚型产生,在调节各种类型的非吞噬细胞(包括成纤维细胞、内皮细胞、血管平滑肌细胞、心肌细胞和甲状腺组织)的细胞内信号级联中起关键作用。例如,一氧化氮(NO)是调节血液流动、血栓形成和神经活动的细胞间信使(7)。NO对非特异性宿主防御、杀死细胞内病原体和肿瘤也很重要。自由基的另一个有益活性是诱导有丝分裂反应(7,8)。简言之,低或中等水平的ROS/RNS对人类健康至关重要)

DELETERIOUS ACTIVITIES OF FREE RADICALS AND OXIDANTS AND PATHOGENESIS
When produced in excess, free radicals and oxidants generate a phenomenon called oxidative stress, a deleterious process that can seriously alter the cell membranes and other structures such as proteins, lipids, lipoproteins, and deoxyribonucleic acid (DNA) (5-10). Oxidative stress can arise when cells cannot adequately destroy the excess of free radicals formed. In other words, oxidative stress results from an imbalance between formation and neutralization of ROS/RNS. For example, hydroxyl radical and peroxynitrite in excess can damage cell membranes and lipoproteins by a process called lipid peroxidation. This reaction leads to the formation of malondialdehyde (MDA) and conjugated diene compounds, which are cytotoxic and mutagenic. Lipid peroxidation occurs by a radical chain reaction, i.e. once started, it spreads rapidly and affects a great number of lipid molecules (14). Proteins may also be damaged by ROS/RNS, leading to structural changes and loss of enzyme activity (9, 14). Oxidative damage to DNA leads to the formation of different oxidative DNA lesions which can cause mutations. The body has several mechanisms to counteract these attacks by using DNA repair enzymes and/or antioxidants (6-9). If not regulated properly, oxidative stress can induce a variety of chronic and degenerative diseases as well as the aging process and some acute pathologies (trauma, stroke).(自由基和氧化剂的有害活动与发病机制

当产生过量的自由基和氧化剂时,会产生一种称为氧化应激的现象,这是一种有害的过程,可严重改变细胞膜和其他结构,如蛋白质、脂质、脂蛋白和脱氧核糖核酸(DNA)(5-10)。当细胞不能充分破坏形成的过量自由基时,就会产生氧化应激。换句话说,氧化应激源于ROS/RNS的形成和中和之间的不平衡。例如,过量的羟基自由基和过氧亚硝酸盐可以通过一种叫做脂质过氧化的过程破坏细胞膜和脂蛋白。这种反应导致丙二醛(MDA)和共轭二烯化合物的形成,它们具有细胞毒性和致突变性。脂质过氧化通过自由基链式反应发生,即一旦开始,它就会迅速扩散并影响大量脂质分子(14)。蛋白质也可能被ROS/RNS破坏,导致结构改变和酶活性丧失(9,14)。DNA的氧化损伤会导致不同的DNA氧化损伤,从而导致突变。身体有几种机制通过使用DNA修复酶和/或抗氧化剂来对抗这些攻击(6-9)。如果调控不当,氧化应激可诱发多种慢性和退行性疾病,以及衰老过程和一些急性疾病(创伤、中风)。)

?For example, tobacco smoking and chronic inflammation resulting from noninfectious diseases like asbestos are sources of oxidative DNA damage that can contribute to the development of lung cancer and other tumors (3, 6). The highly significant correlation between consumption of fats and death rates from leukemia and breast, ovary, rectum cancers among elderly people may be a reflection of greater lipid peroxidation (5, 10).(例如,吸烟和石棉等非传染性疾病引起的慢性炎症是氧化性DNA损伤的来源,可导致肺癌和其他肿瘤的发生(3,6)。老年人脂肪摄入与白血病、乳腺癌、卵巢癌和直肠癌死亡率之间的高度显著相关性可能反映了脂质过氧化程度更高(5,10))

Cardiovascular disease and oxidative stress
Cardiovascular disease (CVD) is of multifactorial etiology associated with a variety of risk factors for its development including hypercholesterolaemia, hypertension, smoking, diabetes, poor diet, stress and physical inactivity amongst others (2, 15, 16). Recently, research data has raised a passionate debate as to whether oxidative stress is a primary or secondary cause of many cardiovascular diseases (16). Further in vivo and ex vivo studies have provided precious evidence supporting the role of oxidative stress in a number of CVDs such as atherosclerosis, ischemia, hypertension, cardiomyopathy, cardiac hypertrophy and congestive heart failure(心血管疾病与氧化应激,心血管疾病(CVD)是一种多因素病因,与多种危险因素有关,包括高胆固醇血症、高血压、吸烟、糖尿病、不良饮食、压力和缺乏运动等(2、15、16)。最近,研究数据引发了一场激烈的辩论,关于氧化应激是许多心血管疾病的主要原因还是次要原因(16)。进一步的体内和体外研究提供了宝贵的证据,支持氧化应激在动脉粥样硬化、缺血、高血压、心肌病、心肌肥厚和充血性心力衰竭等心血管疾病中的作用)

Neurological disease and oxidative stress
Oxidative stress has been investigated in neurological diseases including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), memory loss, depression (17-20). In a disease such as Alzheimer’s, numerous experimental and clinical studies have demonstrated that oxidative damage plays a key role in the loss of neurons and the progression to dementia (19). The production of ?-amyloid, a toxic peptide often found present in Alzheimer’s patients’ brain, is due to oxidative stress and plays an important role in the neurodegenerative processes (20).(神经系统疾病和氧化应激

氧化应激已被研究用于神经系统疾病,包括阿尔茨海默病、帕金森病、多发性硬化症、肌萎缩侧索硬化症(ALS)、记忆力丧失、抑郁症(17-20)。在阿尔茨海默氏症等疾病中,大量实验和临床研究表明,氧化损伤在神经元丧失和痴呆症进展中起着关键作用(19)。?-淀粉样蛋白是阿尔茨海默病患者大脑中常见的一种有毒肽,其产生是由于氧化应激所致,在神经退行性变过程中起着重要作用)

Pulmonary disease and oxidative stress
There is now substantial evidence that inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) are characterized by systemic and local chronic inflammation and oxidative stress (21-24). Oxidants may play a role in enhancing inflammation through the activation of different kinases and redox transcription factors such as NF-kappa B and AP-1 (肺部疾病与氧化应激

现在有大量证据表明,哮喘和慢性阻塞性肺病(COPD)等炎症性肺病的特点是全身和局部慢性炎症和氧化应激(21-24)。氧化剂可能通过激活不同的激酶和氧化还原转录因子,如NF-κB和AP-1,在增强炎症中发挥作用)

Rheumatoid arthritis and oxidative stress
Rheumatoid arthritis is an autoimmune disease characterized by chronic inflammation of the joints and tissue around the joints with infiltration of macrophages and activated T cells (4, 25, 26). The pathogenesis of this disease is due to the generation of ROS and RNS at the site of inflammation. Oxidative damage and inflammation in various rheumatic diseases were proved by increased levels of isoprostanes and prostaglandins in serum and synovial fluid compared to controls (26).(类风湿性关节炎与氧化应激,类风湿性关节炎是一种自身免疫性疾病,其特征是关节和关节周围组织慢性炎症,巨噬细胞和活化T细胞浸润(4,25,26)。这种疾病的发病机制是由于炎症部位产生ROS和RNS。与对照组相比,血清和滑液中的异前列腺素和前列腺素水平升高证明了各种风湿性疾病中的氧化损伤和炎症)

Nephropathy and oxidative stress
Oxidative stress plays a role in a variety of renal diseases such as glomerulonephritis and tubulointerstitial nephritis, chronic renal failure, proteinuria, uremia (5, 27). The nephrotoxicity of certain drugs such as cyclosporine, tacrolimus (FK506), gentamycin, bleomycin, vinblastine, is mainly due to oxidative stress via lipid peroxidation (27-30). Heavy metals (Cd, Hg, Pb, As) and transition metals (Fe, Cu, Co, Cr)-induced different forms of nephropathy and carcinogenicity are strong free radical inducers in the body (肾病与氧化应激,氧化应激在多种肾脏疾病中发挥作用,如肾小球肾炎和肾小管间质肾炎、慢性肾功能衰竭、蛋白尿、尿毒症(5,27)。某些药物的肾毒性,如环孢素、他克莫司(FK506)、庆大霉素、博莱霉素、长春花碱,主要是由于脂质过氧化引起的氧化应激所致(27-30)。重金属(镉、汞、铅、砷)和过渡金属(铁、铜、钴、铬)诱发的不同形式的肾病和致癌性是体内强烈的自由基诱导剂)

Ocular disease and oxidative stress
Oxidative stress is implicated in age-related macular degeneration and cataracts by altering various cell types in the eye either photochemically or nonphotochemically (31). Under the action of free radicals, the crystalline proteins in the lens can cross-link and aggregate, leading to the formation of cataracts (32). In the retina, long-term exposure to radiation can inhibit mitosis in the retinal pigment epithelium and choroids, damage the photoreceptor outer segments, and has been associated with lipid peroxidation (眼部疾病与氧化应激

氧化应激通过光化学或非光化学方式改变眼睛中的各种细胞类型,从而与年龄相关的黄斑变性和白内障有关(31)。在自由基的作用下,晶状体中的晶体蛋白可以交联和聚集,导致白内障的形成(32)。在视网膜中,长期暴露于辐射可抑制视网膜色素上皮和脉络膜的有丝分裂,损伤光感受器外段,并与脂质过氧化有关)

summarizes oxidative stress-induced diseases in humans.

The body has several mechanisms to counteract oxidative stress by producing antioxidants, either naturally generated in situ (endogenous antioxidants), or externally supplied through foods (exogenous antioxidants). The roles of antioxidants are to neutralize the excess of free radicals, to protect the cells against their toxic effects and to contribute to disease prevention.(身体有几种机制通过产生抗氧化剂来对抗氧化应激,这些抗氧化剂要么是在原位自然产生的(内源性抗氧化剂),要么是通过食物外部供应的(外源性抗氧化剂)。抗氧化剂的作用是中和过量的自由基,保护细胞免受其毒性作用,并有助于疾病预防)

Antioxidant classification
Endogenous compounds in cells can be classified as enzymatic antioxidants and non-enzymatic antioxidants.

(抗氧化剂分类

细胞内的内源性化合物可分为酶促抗氧化剂和非酶促抗氧化剂。)

The major antioxidant enzymes directly involved in the neutralization of ROS and RNS are: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GRx) (6-12). SOD, the first line of defense against free radicals, catalyzes the dismutation of superoxide anion radical (O2?–) into hydrogen peroxide (H2O2) by reduction. The oxidant formed (H2O2) is transformed into water and oxygen (O2) by catalase (CAT) or glutathione peroxidase (GPx). The selenoprotein GPx enzyme removes H2O2 by using it to oxidize reduced glutathione (GSH) into oxidized glutathione (GSSG). Glutathione reductase, a flavoprotein enzyme, regenerates GSH from GSSG, with NADPH as a source of reducing power. Besides hydrogen peroxide, GPx also reduces lipid or nonlipid hydroperoxides while oxidizing glutathione (GSH) (2, 5-10).

(直接参与ROS和RNS中和的主要抗氧化酶有:超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)和谷胱甘肽还原酶(GRx)(6-12)。SOD是抵御自由基的第一道防线,通过还原作用催化超氧阴离子自由基(O2?–)分解为过氧化氢(H2O2)。生成的氧化剂(H2O2)通过过氧化氢酶(CAT)或谷胱甘肽过氧化物酶(GPx)转化为水和氧(O2)。硒蛋白GPx酶通过将还原型谷胱甘肽(GSH)氧化为氧化型谷胱甘肽(GSSG)来去除H2O2。谷胱甘肽还原酶是一种黄蛋白酶,可以从GSSG中再生GSH,NADPH是还原力的来源。除了过氧化氢,GPx还可以减少脂质或非脂质过氧化氢,同时氧化谷胱甘肽(GSH)(2,5-10))


The non-enzymatic antioxidants are also divided into metabolic antioxidants and nutrient antioxidants. Metabolic antioxidants belonging to endogenous antioxidants, are produced by metabolism in the body, such as lipoid acid, glutathione, L-ariginine, coenzyme Q10, melatonin, uric acid, bilirubin, metal-chelating proteins, transferrin, etc (5, 6). While nutrient antioxidants belonging to exogenous antioxidants, are compounds which cannot be produced in the body and must be provided through foods or supplements, such as vitamin E, vitamin C, carotenoids, trace metals (selenium, manganese, zinc), flavonoids, omega-3 and omega-6 fatty acids, etc.(抗氧化剂又分为酶促抗氧化剂和非代谢抗氧化剂。代谢抗氧化剂属于内源性抗氧化剂,由体内代谢产生,如类脂酸、谷胱甘肽、L-木犀草素、辅酶Q10、褪黑素、尿酸、胆红素、金属螯合蛋白、转铁蛋白等(5,6)。而营养抗氧化剂属于外源性抗氧化剂,是不能在体内产生的化合物,必须通过食物或补充剂提供,如维生素E、维生素C、类胡萝卜素、微量金属(硒、锰、锌)、类黄酮、ω-3和ω-6脂肪酸等。)

Antioxidant Process
When an antioxidant destroys a free radical, this antioxidant itself becomes oxidized. Therefore, the antioxidant resources must be constantly restored in the body. Thus, while in one particular system an antioxidant is effective against free radicals, in other systems the same antioxidant could become ineffective. Also, in certain circumstances, an antioxidant may even act as a pro-oxidant e.g. it can generate toxic ROS/RNS (10). The antioxidant process can function in one of two ways: chain-breaking or prevention. For the chain-breaking, when a radical releases or steals an electron, a second radical is formed. The last one exerts the same action on another molecule and continues until either the free radical formed is stabilized by a chain-breaking antioxidant (vitamin C, E, carotenoids, etc), or it simply disintegrates into an inoffensive product. The classic example of such a chain reaction is lipid peroxidation. For the preventive way, an antioxidant enzyme like superoxide dismutase, catalase and glutathione peroxidase can prevent oxidation by reducing the rate of chain initiation, e.g., either by scavenging initiating free radicals or by stabilizing transition metal radicals such as copper and iron (10).

(抗氧化过程

当抗氧化剂破坏自由基时,这种抗氧化剂本身就会被氧化。因此,抗氧化剂资源必须在体内不断恢复。因此,虽然在一个特定的体系中抗氧化剂对自由基有效,但在其他体系中,相同的抗氧化剂可能会失效。此外,在某些情况下,抗氧化剂甚至可能起到促氧化剂的作用,例如,它可以产生有毒的ROS/RNS(10)。抗氧化过程可以通过两种方式之一发挥作用:断链或预防。对于链断裂,当一个自由基释放或窃取一个电子时,就会形成第二个自由基。最后一种作用于另一种分子,并持续下去,直到形成的自由基被一种断链抗氧化剂(维生素C、E、类胡萝卜素等)稳定下来,或者它只是分解成一种无害的产品。这种连锁反应的典型例子是脂质过氧化。对于预防方法,抗氧化酶(如超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶)可通过降低链起始速率来预防氧化,例如,通过清除起始自由基或通过稳定过渡金属自由基,如铜和铁)

Nutrient antioxidants
Antioxidants from our diet play an important role in helping endogenous antioxidants for the neutralization of oxidative stress. The nutrient antioxidant deficiency is one of the causes of numerous chronic and degenerative pathologies. Each nutrient is unique in terms of its structure and antioxidant function (6, 38).(营养抗氧化剂,我们饮食中的抗氧化剂在帮助内源性抗氧化剂中和氧化应激方面发挥着重要作用。营养抗氧化剂缺乏是许多慢性和退行性疾病的原因之一。每种营养素在结构和抗氧化功能方面都是独特的)

Vitamin E. Vitamin E is a fat-soluble vitamin with high antioxidant potency. Vitamin E is a chiral compound with eight stereoisomers: α, β, γ, δ tocopherol and α, β, γ, δ tocotrienol. Only α-tocopherol is the most bioactive form in humans. Studies in both animals and humans indicate that natural dextrorotary d-α-tocopherol is nearly twice as effective as synthetic racemic dl-α-tocopherol (39). Because it is fat-soluble, α-tocopherol safeguards cell membranes from damage by free radicals. Its antioxidant function mainly resides in the protection against lipid peroxidation. Vitamin E has been proposed for the prevention against colon, prostate and breast cancers, some cardiovascular diseases, ischemia, cataract, arthritis and certain neurological disorders. (40). However, a recent trial revealed that daily α-tocopherol doses of 400 IU or more can increase the risk of death and should be avoided. In contrast, there is no increased risk of death with a dose of 200 IU per day or less, and there may even be some benefit (41). Although controversial, the use of long-term vitamin E supplementation in high dose should be approached cautiously until further evidence for its safety is available. The dietary sources of vitamin E are vegetable oils, wheat germ oil, whole grains, nuts, cereals, fruits, eggs, poultry, meat (6, 40). Cooking and storage may destroy natural d-α-tocopherol in foods (40).

(维生素E。维生素E是一种脂溶性维生素,具有很高的抗氧化能力。维生素E是一种手性化合物,含有八种立体异构体:α、β、γ、δ生育酚和α、β、γ、δ生育酚。只有α-生育酚是人类最具生物活性的形式。对动物和人类的研究表明,天然右旋d-α-生育酚的有效性几乎是合成外消旋dl-α-生育酚的两倍(39)。因为它是脂溶性的,α-生育酚保护细胞膜免受自由基的损伤。其抗氧化功能主要在于防止脂质过氧化。维生素E被提议用于预防结肠癌、前列腺癌和乳腺癌、一些心血管疾病、缺血、白内障、关节炎和某些神经系统疾病。(40). 然而,最近的一项试验显示,每日400 IU或以上的α-生育酚剂量会增加死亡风险,应避免。相比之下,每天200 IU或更少的剂量不会增加死亡风险,甚至可能有一些益处(41)。尽管存在争议,但在获得进一步的安全性证据之前,应谨慎使用高剂量长期补充维生素E。维生素E的膳食来源包括植物油、小麦胚芽油、全谷物、坚果、谷物、水果、鸡蛋、家禽、肉类(6,40)。烹饪和储存可能会破坏食物中的天然d-α-生育酚)

Vitamin C. Vitamin C also known as ascorbic acid, is a water-soluble vitamin. It is essential for collagen, carnitine and neurotransmitters biosynthesis (42). Health benefits of vitamin C are antioxidant, anti-atherogenic, anti-carcinogenic, immunomodulator. The positive effect of vitamin C resides in reducing the incidence of stomach cancer, and in preventing lung and colorectal cancer. Vitamin C works synergistically with vitamin E to quench free radicals and also regenerates the reduced form of vitamin E. However, the intake of high doses of vitamin C (2000mg or more/day) has been the subject of debate for its eventual pro-oxidant or carcinogen property (42-43). Natural sources of vitamin C are acid fruits, green vegetables, tomatoes. Ascorbic acid is a labile molecule, therefore it may be lost from during cooking (43).

(维生素C维生素C又称抗坏血酸,是一种水溶性维生素。它对胶原蛋白、肉碱和神经递质的生物合成至关重要(42)。维生素C的健康益处包括抗氧化、抗动脉粥样硬化、抗致癌、免疫调节剂。维生素C的积极作用在于降低胃癌的发病率,预防肺癌和结直肠癌。维生素C与维生素E协同作用,以抑制自由基,并使维生素E的还原形式再生。然而,高剂量维生素C(2000毫克或以上/天)的摄入因其最终的促氧化剂或致癌物性质(42-43)一直是争论的主题。维生素C的天然来源是酸性水果、绿色蔬菜、西红柿。抗坏血酸是一种不稳定的分子,因此它可能在烹饪过程中丢失)

Beta-carotene, Beta-carotene is a fat soluble member of the carotenoids which are considered provitamins because they can be converted to active vitamin A. Beta-carotene is converted to retinol, which is essential for vision. It is a strong antioxidant and is the best quencher of singlet oxygen. However, beta-carotene supplement in doses of 20mg daily for 5-8 years has been associated with an increased risk of lung and prostate cancer and increased total mortality in cigarette smokers (44). Beta-carotene 20-30mg daily in smokers may also increase cardiovascular mortality by 12% to 26% (44). These adverse effects do not appear to occur in people who eat foods high in beta-carotene content. Beta-carotene is present in many fruits, grains, oil and vegetables (carrots, green plants, squash, spinach)?

(β-胡萝卜素,β-胡萝卜素是类胡萝卜素中的脂溶性成分,被认为是维生素原,因为它们可以转化为活性维生素a。β-胡萝卜素转化为视黄醇,视黄醇对视力至关重要。它是一种强抗氧化剂,是单线态氧的最佳猝灭剂。然而,连续5-8年每天20毫克的β-胡萝卜素补充剂与吸烟人群患肺癌和前列腺癌的风险增加以及总死亡率增加有关(44)。吸烟者每天摄入20-30mgβ-胡萝卜素也可能会使心血管疾病死亡率增加12%至26%(44)。这些副作用似乎不会发生在吃β-胡萝卜素含量高的食物的人身上。β-胡萝卜素存在于许多水果、谷物、油和蔬菜(胡萝卜、绿色植物、南瓜、菠菜)中)

Lycopene. Lycopene, a carotenoid, possesses antioxidant and antiproliferative properties in animal and in vitro studies on breast, prostate and lung cell lines, although anticancer activity in humans remains controversial (6, 45, 46). Lycopene has been found to be very protective, particularly for prostate cancer (46). Several prospective cohort studies have found associations between high intake of lycopene and reduced incidence of prostate cancer, though not all studies have produced consistent results (45). The major dietary source of lycopene is tomatoes, with the lycopene in cooked tomatoes, tomato juice and tomato sauce included, being more bioavailable than that in raw tomatoes?

(番茄红素。番茄红素是一种类胡萝卜素,在动物体内和乳腺、前列腺和肺细胞系的体外研究中具有抗氧化和抗增殖特性,但在人类体内的抗癌活性仍存在争议(6,45,46)。番茄红素具有很强的保护作用,尤其是对前列腺癌(46)。几项前瞻性队列研究发现,番茄红素的高摄入量与前列腺癌发病率的降低之间存在关联,尽管并非所有研究都得出了一致的结果(45)。番茄红素的主要饮食来源是番茄,包括熟番茄、番茄汁和番茄酱中的番茄红素,比生番茄中的番茄红素生物利用度更高)

Selenium (Se). Se is a trace mineral found in soil, water, vegetables (garlic, onion, grains, nuts, soybean), sea food, meat, liver, yeast (6). It forms the active site of several antioxidant enzymes including glutathione peroxidase. At low dose, health benefits of Se are antioxidant, anti-carcinogenic and immunomodulator (47). Selenium is also necessary for the thyroid function (48). Exceeding the Tolerable Upper Intake Level of 400 μg Se/day can lead to selenosis which is a selenium poisoning characterized by gastrointestinal disorders, hair and nail loss, cirrhosis, pulmonary edema and death (48). Selenium deficiency can occur in patients on total parenteral nutrition (TPN) and in patients with gastrointestinal disorders. In certain China areas with Se poor soil, people have developed a fatal cardiomyopathy called Keshan disease which was cured with Se supplement (48). The role of Se in cancer prevention has been the subject of recent study and debate. Results from clinical and cohort studies about cancer prevention, especially lung, colorectal, and prostate cancers are mixed (10, 48).

(硒(Se)。硒是一种微量矿物质,存在于土壤、水、蔬菜(大蒜、洋葱、谷物、坚果、大豆)、海产品、肉类、肝脏、酵母中。它形成包括谷胱甘肽过氧化物酶在内的几种抗氧化酶的活性部位。在低剂量下,硒的健康益处是抗氧化、抗癌和免疫调节剂(47)。硒对甲状腺功能也是必需的(48)。超过400μg硒/天的可耐受摄入量上限可导致硒中毒,这是一种硒中毒,其特征是胃肠道紊乱、脱发和指甲脱落、肝硬化、肺水肿和死亡(48)。全肠外营养(TPN)患者和胃肠道疾病患者可能会出现硒缺乏。在中国某些贫硒土壤地区,人们患上了一种致命的心肌病,称为克山病,通过补硒治疗(48)。硒在癌症预防中的作用一直是最近研究和辩论的主题。关于癌症预防,尤其是肺癌、结直肠癌和前列腺癌的临床和队列研究的结果是混合的)

Flavonoids. Flavonoids are polyphenolic compounds which are present in most plants. According to chemical structure, over 4000 flavonoids have been identified and classified into flavanols, flavanones, flavones, isoflavones, catechins, anthocyanins, proanthocyanidins. Beneficial effects of flavonoids on human health mainly reside in their potent antioxidant activity (49). They have been reported to prevent or delay a number of chronic and degenerative ailments such as cancer, cardiovascular diseases, arthritis, aging, cataract, memory loss, stroke, Alzheimer’s disease, inflammation, infection. Every plant contains a unique combination of flavonoids, which is why different herbs, all rich in these substances, have very different effects on the body (50). The main natural sources of flavonoids include green tea, grapes (red wine), apple, cocoa (chocolate), ginkgo biloba, soybean, curcuma, berries, onion, broccoli, etc.

(类黄酮。类黄酮是存在于大多数植物中的多酚化合物。根据化学结构,已鉴定出4000多种黄酮类化合物,分为黄烷醇、黄烷酮、黄酮、异黄酮、儿茶素、花青素、原花青素。类黄酮对人类健康的有益作用主要在于其强大的抗氧化活性(49)。据报道,它们可以预防或延缓一些慢性和退行性疾病,如癌症、心血管疾病、关节炎、衰老、白内障、记忆力丧失、中风、阿尔茨海默病、炎症和感染。每种植物都含有独特的黄酮类化合物,这就是为什么不同的草本植物,都富含这些物质,对身体有非常不同的影响(50)。黄酮类化合物的主要天然来源包括绿茶、葡萄(红酒)、苹果、可可(巧克力)、银杏叶、大豆、姜黄、浆果、洋葱、西兰花等)

For example, green tea is a rich source of flavonoids, especially flavonols (catechins) and quercetin. Catechin levels are 4-6 times greater in green tea than in black tea. Many health benefits of green tea reside in its antioxidant, anticarcinogenic, antihypercholesterolemic, antibacterial (dental caries), anti-inflammatory activities(例如,绿茶富含黄酮,尤其是黄酮醇(儿茶素)和槲皮素。绿茶中儿茶素的含量是红茶的4-6倍。绿茶的许多健康益处在于其抗氧化、抗癌、抗高胆固醇、抗菌(龋齿)、抗炎活性)

Omega-3 and omega-6 fatty acids. They are essential long-chain polyunsaturated fatty acids because the human body cannot synthesize them. Therefore, they are only derived from food. Omega-3 fatty acids can be found in fat fish (salmon, tuna, halibut, sardines, pollock), krill, algae, walnut, nut oils and flaxseed. However, certain big fishes like tilefish, shark, swordfish are to be avoided because of their high mercury levels (52). There are three major dietary types of omega-3 fatty acids: eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and alpha-linolenic acid (ALA). EPA and DHA are abundant in fish and are directly used by the body; while ALA is found in nuts and has to be converted to DHA and EPA by the body. Dietary sources of omega-6 fatty acids (linoleic acid) include vegetable oils, nuts, cereals, eggs, poultry. It is important to maintain an appropriate balance of omega-3s and omega-6s in the diet, as these two substances work together to promote health (52, 53). Omega-3 fatty acids help reduce inflammation, and most omega-6 fatty acids tend to promote inflammation. An inappropriate balance of these essential fatty acids contributes to the development of disease while a proper balance helps maintain and even improve health. A healthy diet should consist of about 2-4 times more omega-6s than omega-3s. In American diet, omega-6s are 14-25 times more abundant than omega-3s, that explains the rising rate of inflammatory disorders in the USA (52). Omega-3s reduce inflammation and prevent chronic ailments such as heart disease, stroke, memory loss, depression, arthritis, cataract, cancer. Omega-6s improve diabetic neuropathy, eczema, psoriasis, osteoporosis, and aid in cancer treatment (ω-3和ω-6脂肪酸。它们是必需的长链多不饱和脂肪酸,因为人体无法合成它们。因此,它们仅来源于食物。ω-3脂肪酸存在于肥鱼(鲑鱼、金枪鱼、大比目鱼、沙丁鱼、鳕鱼)、磷虾、藻类、核桃、坚果油和亚麻籽中。然而,某些大鱼,如罗非鱼、鲨鱼、旗鱼,由于其汞含量高,应避免食用(52)。ω-3脂肪酸有三种主要的饮食类型:二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)和α-亚麻酸(ALA)。EPA和DHA在鱼类中含量丰富,可直接用于身体;而ALA则存在于坚果中,人体必须将其转化为DHA和EPA。ω-6脂肪酸(亚油酸)的膳食来源包括植物油、坚果、谷物、鸡蛋和家禽。在饮食中保持ω-3和ω-6的适当平衡很重要,因为这两种物质共同促进健康(52,53)。ω-3脂肪酸有助于减轻炎症,大多数ω-6脂肪酸倾向于促进炎症。这些必需脂肪酸的不适当平衡有助于疾病的发展,而适当的平衡有助于维持甚至改善健康。一个健康的饮食应该包含大约2-4倍于ω-3的ω-6。在美国饮食中,ω-6的含量是ω-3的14-25倍,这解释了美国炎症性疾病发病率的上升(52)。ω-3脂肪酸可以减少炎症,预防慢性疾病,如心脏病、中风、记忆力减退、抑郁症、关节炎、白内障和癌症。ω-6脂肪酸改善糖尿病神经病变、湿疹、牛皮癣、骨质疏松症,并有助于癌症治疗)

Finally, some endogenous antioxidants such as L-arginine, coenzyme Q-10, melatonin are recently used as supplements for the prevention or treatment of some chronic and degenerative diseases (54-56). It is notified that the list of antioxidants cited here is not exhaustive.(最后,一些内源性抗氧化剂,如L-精氨酸、辅酶Q-10、褪黑素,最近被用作预防或治疗某些慢性和退行性疾病的补充物(54-56)。特此通知,此处引用的抗氧化剂列表并非详尽无遗)

Antioxidant supplementation. Advantages and Inconveniences
Antioxidant supplements are compounds obtained either by extraction from natural foods or by chemical synthesis. Of course, they do not have the same composition as natural antioxidants in foods. Therefore, opinions are divided over whether or not antioxidant supplements offer the same health benefits as antioxidants in foods (6, 57-59). Even if antioxidant supplementation is receiving enthusiastic debate and is increasingly adopted in many industrial countries, supporting evidence is still ambiguous (5-59). Although many epidemiological data suggest that antioxidants may have a beneficial effect on many chronic diseases, the systematic use of supplements is hindered by several factors: the lack of prospective and controlled studies, the long-term effects and the dosages necessary for each type of diseases. Also, antioxidant supplements can act as pro-oxidants e.g. as oxidative stress inducers if they are consumed at levels significantly above the recommended dietary intakes (RDI). Like conventional medicines, dietary supplements may cause side effects, or interaction with another medication or supplement, that may make the health worse. However, dietary supplements can become necessary and useful in some particular situations, such as soldiers in front, sailors in ships, patients with gastrointestinal disorders, or people with low incomes, e.g. people who cannot afford a variety of vegetables, fruits, and/or sea foods. In these cases, taking one or two multivitamin with mineral tablets and fish oil capsules in RDI concentrations may be helpful to maintain good health. Taking supplements in high doses can be harmful and always consult a healthcare professional about combining a dietary supplement with a conventional medical treatment. If possible, it is best to get the antioxidants from a diet rich in fruits and vegetables rather than from supplements.(抗氧化剂补充。优点和不便

抗氧化剂补充剂是从天然食物中提取或通过化学合成获得的化合物。当然,它们与食物中的天然抗氧化剂成分不同。因此,对于抗氧化剂补充剂是否与食品中的抗氧化剂具有相同的健康益处,意见分歧(6,57-59)。即使抗氧化剂补充剂正受到热烈的讨论,并且在许多工业国家越来越多地被采用,但支持证据仍然不明确(5-59)。尽管许多流行病学数据表明抗氧化剂可能对许多慢性病有有益作用,但系统使用补充剂受到以下几个因素的阻碍:缺乏前瞻性和对照研究、长期影响以及每种疾病所需的剂量。此外,如果抗氧化剂补充剂的摄入量明显高于推荐的膳食摄入量(RDI),那么它们可以作为促氧化剂,例如作为氧化应激诱导剂。与传统药物一样,膳食补充剂可能会引起副作用,或与其他药物或补充剂相互作用,从而使健康状况恶化。然而,在某些特定情况下,膳食补充剂可能是必要且有用的,例如前线士兵、船上水手、胃肠道疾病患者或低收入人群,例如买不起各种蔬菜、水果和/或海产品的人群。在这些情况下,在RDI浓度下服用一到两种复合维生素、矿物质片和鱼油胶囊可能有助于保持健康。服用高剂量的补充剂可能有害,并且在将膳食补充剂与常规治疗相结合时,请始终咨询医疗保健专家。如果可能的话,最好从富含水果和蔬菜的饮食中获取抗氧化剂,而不是从补充剂中获取。)

CONCLUSION
The implication of oxidative stress in the etiology of several chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. In the future, a therapeutic strategy to increase the antioxidant capacity of cells may be used to fortify the long term effective treatment. However, many questions about antioxidant supplements in disease prevention remain unsolved. Further research is needed before this supplementation could be officially recommended as an adjuvant therapy. In the meantime, it is reminded that avoiding oxidant sources (cigarette, alcohol, bad food, stress, etc) must be considered as important as taking diet rich in antioxidants. Indeed, our health also depends on our lifestyle choice.(结论

氧化应激在几种慢性和退行性疾病的病因学中的意义表明,抗氧化疗法是一种很有前途的治疗途径。在未来,可以使用一种增加细胞抗氧化能力的治疗策略来加强长期有效的治疗。然而,关于抗氧化剂补充剂在疾病预防中的许多问题仍未解决。在正式推荐这种补充剂作为辅助治疗之前,还需要进一步的研究。同时,要提醒大家,避免氧化源(香烟、酒精、不良食物、压力等)必须被视为与摄入富含抗氧化剂的饮食同等重要。事实上,我们的健康也取决于我们的生活方式选择)

Reference:

【1】Free Radicals, Antioxidants in Disease and Health

  游戏开发 最新文章
6、英飞凌-AURIX-TC3XX: PWM实验之使用 GT
泛型自动装箱
CubeMax添加Rtthread操作系统 组件STM32F10
python多线程编程:如何优雅地关闭线程
数据类型隐式转换导致的阻塞
WebAPi实现多文件上传,并附带参数
from origin ‘null‘ has been blocked by
UE4 蓝图调用C++函数(附带项目工程)
Unity学习笔记(一)结构体的简单理解与应用
【Memory As a Programming Concept in C a
上一篇文章      下一篇文章      查看所有文章
加:2022-03-16 22:53:21  更:2022-03-16 22:54:42 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/28 17:19:55-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码