IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 游戏开发 -> Python——PCL Kdtree用法 -> 正文阅读

[游戏开发]Python——PCL Kdtree用法

# -*- coding: utf-8 -*-
# http://pointclouds.org/documentation/tutorials/kdtree_search.php#kdtree-search

import numpy as np
import pcl
import random


def main():
    # srand (time (NULL));
    # pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
    cloud = pcl.PointCloud()

    # // Generate pointcloud data
    # cloud->width = 1000;
    # cloud->height = 1;
    # cloud->points.resize (cloud->width * cloud->height);
    #
    # for (size_t i = 0; i < cloud->points.size (); ++i)
    # {
    # cloud->points[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);
    # cloud->points[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);
    # cloud->points[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);
    # }
    points = np.zeros((1000, 3), dtype=np.float32)
    RAND_MAX = 1024
    for i in range(0, 1000):
        points[i][0] = 1024 * random.random() / (RAND_MAX + 1.0)
        points[i][1] = 1024 * random.random() / (RAND_MAX + 1.0)
        points[i][2] = 1024 * random.random() / (RAND_MAX + 1.0)

    cloud.from_array(points)

    # pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
    # kdtree.setInputCloud (cloud);
    kdtree = cloud.make_kdtree_flann()

    # pcl::PointXYZ searchPoint;
    #
    # searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);
    # searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);
    # searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);
    searchPoint = pcl.PointCloud()
    searchPoints = np.zeros((1, 3), dtype=np.float32)
    searchPoints[0][0] = 1024 * random.random() / (RAND_MAX + 1.0)
    searchPoints[0][1] = 1024 * random.random() / (RAND_MAX + 1.0)
    searchPoints[0][2] = 1024 * random.random() / (RAND_MAX + 1.0)

    searchPoint.from_array(searchPoints)

    # // K nearest neighbor search
    # int K = 10;
    K = 10

    # std::vector<int> pointIdxNKNSearch(K);
    # std::vector<float> pointNKNSquaredDistance(K);
    #
    # std::cout << "K nearest neighbor search at (" << searchPoint.x
    #         << " " << searchPoint.y
    #         << " " << searchPoint.z
    #         << ") with K=" << K << std::endl;
    # print ('K nearest neighbor search at (' + searchPoint[0][0] + ' ' + searchPoint[0][1] + ' ' + searchPoint[0][2] + ') with K=' + str(K))
    print('K nearest neighbor search at (' + str(searchPoint[0][0]) + ' ' + str(
        searchPoint[0][1]) + ' ' + str(searchPoint[0][2]) + ') with K=' + str(K))

    # if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0 )
    # {
    # for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
    #   std::cout << "    "  <<   cloud->points[ pointIdxNKNSearch[i] ].x
    #             << " " << cloud->points[ pointIdxNKNSearch[i] ].y
    #             << " " << cloud->points[ pointIdxNKNSearch[i] ].z
    #             << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
    # }
    [ind, sqdist] = kdtree.nearest_k_search_for_cloud(searchPoint, K)
    # if nearest_k_search_for_cloud
    for i in range(0, ind.size):
        print('(' + str(cloud[ind[0][i]][0]) + ' ' + str(cloud[ind[0][i]][1]) + ' ' + str(
            cloud[ind[0][i]][2]) + ' (squared distance: ' + str(sqdist[0][i]) + ')')

    # Neighbors within radius search
    # std::vector<int> pointIdxRadiusSearch;
    # std::vector<float> pointRadiusSquaredDistance;
    # float radius = 256.0f * rand () / (RAND_MAX + 1.0f);
    # std::cout << "Neighbors within radius search at (" << searchPoint.x
    #         << " " << searchPoint.y
    #       << " " << searchPoint.z
    #        << ") with radius=" << radius << std::endl;
    radius = 256.0 * random.random() / (RAND_MAX + 1.0)
    print('Neighbors within radius search at (' + str(searchPoint[0][0]) + ' ' + str(
        searchPoint[0][1]) + ' ' + str(searchPoint[0][2]) + ') with radius=' + str(radius))

    # if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 )
    # {
    # for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
    #   std::cout << "    "  <<   cloud->points[ pointIdxRadiusSearch[i] ].x
    #             << " " << cloud->points[ pointIdxRadiusSearch[i] ].y
    #             << " " << cloud->points[ pointIdxRadiusSearch[i] ].z
    #             << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
    # }
    # NotImplement radiusSearch
    [ind, sqdist] = kdtree.radius_search_for_cloud(searchPoint, radius)
    for i in range(0, ind.size):
        print('(' + str(cloud[ind[0][i]][0]) + ' ' + str(cloud[ind[0][i]][1]) + ' ' + str(
            cloud[ind[0][i]][2]) + ' (squared distance: ' + str(sqdist[0][i]) + ')')


if __name__ == "__main__":
    # import cProfile
    # cProfile.run('main()', sort='time')
    main()
  游戏开发 最新文章
6、英飞凌-AURIX-TC3XX: PWM实验之使用 GT
泛型自动装箱
CubeMax添加Rtthread操作系统 组件STM32F10
python多线程编程:如何优雅地关闭线程
数据类型隐式转换导致的阻塞
WebAPi实现多文件上传,并附带参数
from origin ‘null‘ has been blocked by
UE4 蓝图调用C++函数(附带项目工程)
Unity学习笔记(一)结构体的简单理解与应用
【Memory As a Programming Concept in C a
上一篇文章      下一篇文章      查看所有文章
加:2022-03-24 00:54:10  更:2022-03-24 00:54:59 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 18:01:53-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码