IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 游戏开发 -> 1自动求导 -> 正文阅读

[游戏开发]1自动求导

import torch
x = torch.arange(4.0)
x
tensor([0., 1., 2., 3.])

在我们计算y关于X的梯度前,我们需要一个地方来存储梯度

x.requires_grad_(True) #等价于 ~x = torch.arange(4.0, requires_grad = True)
x.grad # 默认值是None
y = 2 * torch.dot(x,x)
y
tensor(28., grad_fn=<MulBackward0>)

通过调用反向传播函数来自动计算y关于x每个分量的梯度

y.backward()
x.grad
tensor([ 0.,  4.,  8., 12.])
x.grad == 4 * x
tensor([True, True, True, True])
#在默认情况下,PyTorch会累积梯度,我们需要清楚之前的值
x.grad.zero_()
y = x.sum()
y.backward()
x.grad
tensor([1., 1., 1., 1.])
def f(a):
    b = a*2
    while b.norm()<1000:
        b = b* 2
    if b.sum()> 0:
        c= b
    else:
        c = 100 * b
    return c

a = torch.randn(size=(),requires_grad=True)
d = f(a)
d.backward()

a.grad == d/a
tensor(True)

  游戏开发 最新文章
6、英飞凌-AURIX-TC3XX: PWM实验之使用 GT
泛型自动装箱
CubeMax添加Rtthread操作系统 组件STM32F10
python多线程编程:如何优雅地关闭线程
数据类型隐式转换导致的阻塞
WebAPi实现多文件上传,并附带参数
from origin ‘null‘ has been blocked by
UE4 蓝图调用C++函数(附带项目工程)
Unity学习笔记(一)结构体的简单理解与应用
【Memory As a Programming Concept in C a
上一篇文章      下一篇文章      查看所有文章
加:2022-04-01 00:25:36  更:2022-04-01 00:27:59 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/23 19:12:02-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码