https://github.com/onnx/onnx-tensorrt/blob/84b5be1d6fc03564f2c0dba85a2ee75bad242c2e/oper ators.md ?
Operator | Supported? | Restrictions |
---|
Abs | Y | | Acos | Y | | Acosh | Y | | Add | Y | | And | Y | | ArgMax | Y | | ArgMin | Y | | Asin | Y | | Asinh | Y | | Atan | Y | | Atanh | Y | | AveragePool | Y | 2D or 3D Pooling only | BatchNormalization | Y | | BitShift | N | | Cast | Y | Cast is only supported for TRT types | Ceil | Y | | Clip | Y | min and max clip values must be an initializer | Compress | N | | Concat | Y | | ConcatFromSequence N | | | Constant | Y | | ConstantOfShape | Y | | Conv | Y | 2D or 3D convolutions only | ConvInteger | N | | ConvTranspose | Y | 2D or 3D deconvolutions only. Weights must be an initializer | Cos | Y | | Cosh | Y | | CumSum | N | | DepthToSpace | Y | | DequantizeLinear | Y | Scales and zero-point value must be initializers | Det | N | | Div | Y | | Dropout | N | | Elu | Y | | Equal | Y | | Erf | Y | | Exp | Y | | Expand | Y | | EyeLike | N | | Flatten | Y | | Floor | Y | | Gather | Y | | GatherElements | N | | GatherND | N | | Gemm | Y | | GlobalAveragePool | Y | | GlobalLpPool | N | | GlobalMaxPool | Y | | Greater | Y | | GRU | Y | | HardSigmoid | Y | | Hardmax | N | | Identity | Y | | If | N | | ImageScaler | Y | | InstanceNormalization | Y | Scales and biases must be an initializer | IsInf | N | | IsNaN | N | | LeakyRelu | Y | | Less | Y | | Log | Y | | LogSoftmax | Y | | Loop | Y | | LRN | Y | | LSTM | Y | | LpNormalization | N | | LpPool | N | | MatMul | Y | | MatMulInteger | N | | Max | Y | | MaxPool | Y | | MaxRoiPool | N | | MaxUnpool | N | | Mean | Y | | Min | Y | | Mod | N | | Mul | Y | | Multinomial | N | | Neg | Y | | NonMaxSuppression | N | | NonZero | N | | Not | Y | | OneHot | N | | Or | Y | | Pad | Y | Zero-padding on last 2 dimensions only | ParametricSoftplus | Y | | Pow | Y | | PRelu | Y | | QLinearConv | N | | QLinearMatMul | N | | QuantizeLinear | Y | Scales and zero-point value must be initializers | RNN | N | | RandomNormal | N | | RandomNormalLike | N | | RandomUniform | Y | | RandomUniformLike | Y | | Range | Y | Float inputs are only supported if start, limit and delta inputs are initializers | Reciprocal | N | | ReduceL1 | Y | | ReduceL2 | Y | | ReduceLogSum | Y | | ReduceLogSumExp | Y | | ReduceMax | Y | | ReduceMean | Y | | ReduceMin | Y | | ReduceProd | Y | | ReduceSum | Y | | ReduceSumSquare | Y | | Relu | Y | | Reshape | Y | | Resize | Y | Asymmetric coordinate transformation mode only. Nearest or Linear resizing mode only. "floor" mode only for resize_mode attribute. | ReverseSequence | N | | RNN | Y | | RoiAlign | N | | Round | N | | ScaledTanh | Y | | Scan | Y | | Scatter | N | | ScatterElements | N | | ScatterND | N | | Selu | Y | | SequenceAt | N | | SequenceConstruct | N | | SequenceEmpty | N | | SequenceErase | N | | SequenceInsert | N | | SequenceLength | N | | Shape | Y | | Shrink | N | | Sigmoid | Y | | Sign | N | | Sin | Y | | Sinh | Y | | Size | Y | | Slice | Y | Slice axes must be an initializer | Softmax | Y | | Softplus | Y | | Softsign | Y | | SpaceToDepth | Y | | Split | Y | | SplitToSequence | N | | Sqrt | Y | | Squeeze | Y | | StringNormalizer | N | | Sub | Y | | Sum | Y | | Tan | Y | | Tanh | Y | | TfIdfVectorizer | N | | ThresholdedRelu | Y | | Tile | Y | | TopK | Y | | Transpose | Y | | Unique | N | | Unsqueeze | Y | | Upsample | Y | | Where | Y | | Xor | N | |
onnx-tensorrt/operators.md at main · onnx/onnx-tensorrt · GitHub
Operator | Supported | Supported Types | Restrictions |
---|
Abs | Y | FP32, FP16, INT32 | | Acos | Y | FP32, FP16 | | Acosh | Y | FP32, FP16 | | Add | Y | FP32, FP16, INT32 | | And | Y | BOOL | | ArgMax | Y | FP32, FP16 | | ArgMin | Y | FP32, FP16 | | Asin | Y | FP32, FP16 | | Asinh | Y | FP32, FP16 | | Atan | Y | FP32, FP16 | | Atanh | Y | FP32, FP16 | | AveragePool | Y | FP32, FP16, INT8, INT32 | 2D or 3D Pooling only | BatchNormalization | Y | FP32, FP16 | | BitShift | N | | | Cast | Y | FP32, FP16, INT32, INT8, BOOL | | Ceil | Y | FP32, FP16 | | Celu | Y | FP32, FP16 | | Clip | Y | FP32, FP16, INT8 | | Compress | N | | | Concat | Y | FP32, FP16, INT32, INT8, BOOL | | ConcatFromSequence | N | | | Constant | Y | FP32, FP16, INT32, INT8, BOOL | | ConstantOfShape | Y | FP32 | | Conv | Y | FP32, FP16, INT8 | 2D or 3D convolutions only. Weights W must be an initailizer | ConvInteger | N | | | ConvTranspose | Y | FP32, FP16, INT8 | 2D or 3D deconvolutions only. Weights W must be an initializer | Cos | Y | FP32, FP16 | | Cosh | Y | FP32, FP16 | | CumSum | Y | FP32, FP16 | axis must be an initializer | DepthToSpace | Y | FP32, FP16, INT32 | | DequantizeLinear | Y | INT8 | x_zero_point must be zero | Det | N | | | Div | Y | FP32, FP16, INT32 | | Dropout | Y | FP32, FP16 | | DynamicQuantizeLinear | N | | | Einsum | Y | FP32, FP16 | Ellipsis and diagonal operations are not supported. Broadcasting between inputs is not supported | Elu | Y | FP32, FP16, INT8 | | Equal | Y | FP32, FP16, INT32 | | Erf | Y | FP32, FP16 | | Exp | Y | FP32, FP16 | | Expand | Y | FP32, FP16, INT32, BOOL | | EyeLike | Y | FP32, FP16, INT32, BOOL | | Flatten | Y | FP32, FP16, INT32, BOOL | | Floor | Y | FP32, FP16 | | Gather | Y | FP32, FP16, INT8, INT32 | | GatherElements | Y | FP32, FP16, INT8, INT32 | | GatherND | Y | FP32, FP16, INT8, INT32 | | Gemm | Y | FP32, FP16, INT8 | | GlobalAveragePool | Y | FP32, FP16, INT8 | | GlobalLpPool | Y | FP32, FP16, INT8 | | GlobalMaxPool | Y | FP32, FP16, INT8 | | Greater | Y | FP32, FP16, INT32 | | GreaterOrEqual | Y | FP32, FP16, INT32 | | GRU | Y | FP32, FP16 | For bidirectional GRUs, activation functions must be the same for both the forward and reverse pass | HardSigmoid | Y | FP32, FP16, INT8 | | Hardmax | N | | | Identity | Y | FP32, FP16, INT32, INT8, BOOL | | If | Y | FP32, FP16, INT32, BOOL | Output tensors of the two conditional branches must have broadcastable shapes, and must have different names | ImageScaler | Y | FP32, FP16 | | InstanceNormalization | Y | FP32, FP16 | Scales scale and biases B must be initializers. Input rank must be >=3 & <=5 | IsInf | N | | | IsNaN | Y | FP32, FP16, INT32 | | LeakyRelu | Y | FP32, FP16, INT8 | | Less | Y | FP32, FP16, INT32 | | LessOrEqual | Y | FP32, FP16, INT32 | | Log | Y | FP32, FP16 | | LogSoftmax | Y | FP32, FP16 | | Loop | Y | FP32, FP16, INT32, BOOL | | LRN | Y | FP32, FP16 | | LSTM | Y | FP32, FP16 | For bidirectional LSTMs, activation functions must be the same for both the forward and reverse pass | LpNormalization | Y | FP32, FP16 | | LpPool | Y | FP32, FP16, INT8 | | MatMul | Y | FP32, FP16 | | MatMulInteger | N | | | Max | Y | FP32, FP16, INT32 | | MaxPool | Y | FP32, FP16, INT8 | 2D or 3D pooling only. Indices output tensor unsupported | MaxRoiPool | N | | | MaxUnpool | N | | | Mean | Y | FP32, FP16, INT32 | | MeanVarianceNormalization | N | | | Min | Y | FP32, FP16, INT32 | | Mod | N | | | Mul | Y | FP32, FP16, INT32 | | Multinomial | N | | | Neg | Y | FP32, FP16, INT32 | | NegativeLogLikelihoodLoss | N | | | NonMaxSuppression | Y [EXPERIMENTAL] | FP32, FP16 | Inputs max_output_boxes_per_class , iou_threshold , and score_threshold must be initializers. Output has fixed shape and is padded to [max_output_boxes_per_class , 3]. | NonZero | N | | | Not | Y | BOOL | | OneHot | N | | | Or | Y | BOOL | | Pad | Y | FP32, FP16, INT8, INT32 | | ParametricSoftplus | Y | FP32, FP16, INT8 | | Pow | Y | FP32, FP16 | | PRelu | Y | FP32, FP16, INT8 | | QLinearConv | N | | | QLinearMatMul | N | | | QuantizeLinear | Y | FP32, FP16 | y_zero_point must be 0 | RandomNormal | N | | | RandomNormalLike | N | | | RandomUniform | Y | FP32, FP16 | seed value is ignored by TensorRT | RandomUniformLike | Y | FP32, FP16 | seed value is ignored by TensorRT | Range | Y | FP32, FP16, INT32 | Floating point inputs are only supported if start , limit , and delta inputs are initializers | Reciprocal | N | | | ReduceL1 | Y | FP32, FP16 | | ReduceL2 | Y | FP32, FP16 | | ReduceLogSum | Y | FP32, FP16 | | ReduceLogSumExp | Y | FP32, FP16 | | ReduceMax | Y | FP32, FP16 | | ReduceMean | Y | FP32, FP16 | | ReduceMin | Y | FP32, FP16 | | ReduceProd | Y | FP32, FP16 | | ReduceSum | Y | FP32, FP16 | | ReduceSumSquare | Y | FP32, FP16 | | Relu | Y | FP32, FP16, INT8 | | Reshape | Y | FP32, FP16, INT32, INT8, BOOL | | Resize | Y | FP32, FP16 | Supported resize transformation modes: half_pixel , pytorch_half_pixel , tf_half_pixel_for_nn , asymmetric , and align_corners . Supported resize modes: nearest , linear . Supported nearest modes: floor , ceil , round_prefer_floor , round_prefer_ceil | ReverseSequence | Y | FP32, FP16 | Dynamic input shapes are unsupported | RNN | Y | FP32, FP16 | For bidirectional RNNs, activation functions must be the same for both the forward and reverse pass | RoiAlign | N | | | Round | Y | FP32, FP16, INT8 | | ScaledTanh | Y | FP32, FP16, INT8 | | Scan | Y | FP32, FP16 | | Scatter | Y | FP32, FP16, INT8, INT32 | | ScatterElements | Y | FP32, FP16, INT8, INT32 | | ScatterND | Y | FP32, FP16, INT8, INT32 | | Selu | Y | FP32, FP16, INT8 | | SequenceAt | N | | | SequenceConstruct | N | | | SequenceEmpty | N | | | SequenceErase | N | | | SequenceInsert | N | | | SequenceLength | N | | | Shape | Y | FP32, FP16, INT32, INT8, BOOL | | Shrink | N | | | Sigmoid | Y | FP32, FP16, INT8 | | Sign | Y | FP32, FP16, INT8, INT32 | | Sin | Y | FP32, FP16 | | Sinh | Y | FP32, FP16 | | Size | Y | FP32, FP16, INT32, INT8, BOOL | | Slice | Y | FP32, FP16, INT32, INT8, BOOL | axes must be an initializer | Softmax | Y | FP32, FP16 | | SoftmaxCrossEntropyLoss | N | | | Softplus | Y | FP32, FP16, INT8 | | Softsign | Y | FP32, FP16, INT8 | | SpaceToDepth | Y | FP32, FP16, INT32 | | Split | Y | FP32, FP16, INT32, BOOL | | SplitToSequence | N | | | Sqrt | Y | FP32, FP16 | | Squeeze | Y | FP32, FP16, INT32, INT8, BOOL | axes must be an initializer | StringNormalizer | N | | | Sub | Y | FP32, FP16, INT32 | | Sum | Y | FP32, FP16, INT32 | | Tan | Y | FP32, FP16 | | Tanh | Y | FP32, FP16, INT8 | | TfIdfVectorizer | N | | | ThresholdedRelu | Y | FP32, FP16, INT8 | | Tile | Y | FP32, FP16, INT32, BOOL | | TopK | Y | FP32, FP16 | K input must be an initializer | Transpose | Y | FP32, FP16, INT32, INT8, BOOL | | Unique | N | | | Unsqueeze | Y | FP32, FP16, INT32, INT8, BOOL | axes must be a constant tensor | Upsample | Y | FP32, FP16 | | Where | Y | FP32, FP16, INT32, BOOL | | Xor | N | | |
https://github.com/onnx/onnx/blob/main/docs/Operators.md
Operator | Since version |
---|
Abs | 13, 6, 1 | Acos | 7 | Acosh | 9 | Add | 14, 13, 7, 6, 1 | And | 7, 1 | ArgMax | 13, 12, 11, 1 | ArgMin | 13, 12, 11, 1 | Asin | 7 | Asinh | 9 | Atan | 7 | Atanh | 9 | AveragePool | 11, 10, 7, 1 | BatchNormalization | 15, 14, 9, 7, 6, 1 | BitShift | 11 | Cast | 13, 9, 6, 1 | Ceil | 13, 6, 1 | Clip | 13, 12, 11, 6, 1 | Compress | 11, 9 | Concat | 13, 11, 4, 1 | ConcatFromSequence | 11 | Constant | 13, 12, 11, 9, 1 | ConstantOfShape | 9 | Conv | 11, 1 | ConvInteger | 10 | ConvTranspose | 11, 1 | Cos | 7 | Cosh | 9 | CumSum | 14, 11 | DepthToSpace | 13, 11, 1 | DequantizeLinear | 13, 10 | Det | 11 | Div | 14, 13, 7, 6, 1 | Dropout | 13, 12, 10, 7, 6, 1 | Einsum | 12 | Elu | 6, 1 | Equal | 13, 11, 7, 1 | Erf | 13, 9 | Exp | 13, 6, 1 | Expand | 13, 8 | EyeLike | 9 | Flatten | 13, 11, 9, 1 | Floor | 13, 6, 1 | GRU | 14, 7, 3, 1 | Gather | 13, 11, 1 | GatherElements | 13, 11 | GatherND | 13, 12, 11 | Gemm | 13, 11, 9, 7, 6, 1 | GlobalAveragePool | 1 | GlobalLpPool | 2, 1 | GlobalMaxPool | 1 | Greater | 13, 9, 7, 1 | GridSample | 16 | HardSigmoid | 6, 1 | Hardmax | 13, 11, 1 | Identity | 16, 14, 13, 1 | If | 16, 13, 11, 1 | InstanceNormalization | 6, 1 | IsInf | 10 | IsNaN | 13, 9 | LRN | 13, 1 | LSTM | 14, 7, 1 | LeakyRelu | 16, 6, 1 | Less | 13, 9, 7, 1 | Log | 13, 6, 1 | Loop | 16, 13, 11, 1 | LpNormalization | 1 | LpPool | 11, 2, 1 | MatMul | 13, 9, 1 | MatMulInteger | 10 | Max | 13, 12, 8, 6, 1 | MaxPool | 12, 11, 10, 8, 1 | MaxRoiPool | 1 | MaxUnpool | 11, 9 | Mean | 13, 8, 6, 1 | Min | 13, 12, 8, 6, 1 | Mod | 13, 10 | Mul | 14, 13, 7, 6, 1 | Multinomial | 7 | Neg | 13, 6, 1 | NonMaxSuppression | 11, 10 | NonZero | 13, 9 | Not | 1 | OneHot | 11, 9 | Optional | 15 | OptionalGetElement | 15 | OptionalHasElement | 15 | Or | 7, 1 | PRelu | 16, 9, 7, 6, 1 | Pad | 13, 11, 2, 1 | Pow | 15, 13, 12, 7, 1 | QLinearConv | 10 | QLinearMatMul | 10 | QuantizeLinear | 13, 10 | RNN | 14, 7, 1 | RandomNormal | 1 | RandomNormalLike | 1 | RandomUniform | 1 | RandomUniformLike | 1 | Reciprocal | 13, 6, 1 | ReduceL1 | 13, 11, 1 | ReduceL2 | 13, 11, 1 | ReduceLogSum | 13, 11, 1 | ReduceLogSumExp | 13, 11, 1 | ReduceMax | 13, 12, 11, 1 | ReduceMean | 13, 11, 1 | ReduceMin | 13, 12, 11, 1 | ReduceProd | 13, 11, 1 | ReduceSum | 13, 11, 1 | ReduceSumSquare | 13, 11, 1 | Relu | 14, 13, 6, 1 | Reshape | 14, 13, 5, 1 | Resize | 13, 11, 10 | ReverseSequence | 10 | RoiAlign | 16, 10 | Round | 11 | Scan | 16, 11, 9, 8 | Scatter (deprecated) | 11, 9 | ScatterElements | 16, 13, 11 | ScatterND | 16, 13, 11 | Selu | 6, 1 | SequenceAt | 11 | SequenceConstruct | 11 | SequenceEmpty | 11 | SequenceErase | 11 | SequenceInsert | 11 | SequenceLength | 11 | Shape | 15, 13, 1 | Shrink | 9 | Sigmoid | 13, 6, 1 | Sign | 13, 9 | Sin | 7 | Sinh | 9 | Size | 13, 1 | Slice | 13, 11, 10, 1 | Softplus | 1 | Softsign | 1 | SpaceToDepth | 13, 1 | Split | 13, 11, 2, 1 | SplitToSequence | 11 | Sqrt | 13, 6, 1 | Squeeze | 13, 11, 1 | StringNormalizer | 10 | Sub | 14, 13, 7, 6, 1 | Sum | 13, 8, 6, 1 | Tan | 7 | Tanh | 13, 6, 1 | TfIdfVectorizer | 9 | ThresholdedRelu | 10 | Tile | 13, 6, 1 | TopK | 11, 10, 1 | Transpose | 13, 1 | Trilu | 14 | Unique | 11 | Unsqueeze | 13, 11, 1 | Upsample (deprecated) | 10, 9, 7 | Where | 16, 9 | Xor | 7, 1 | Function | Since version | Bernoulli | 15 | CastLike | 15 | Celu | 12 | DynamicQuantizeLinear | 11 | GreaterOrEqual | 16, 12 | HardSwish | 14 | LessOrEqual | 16, 12 | LogSoftmax | 13, 11, 1 | MeanVarianceNormalization | 13, 9 | NegativeLogLikelihoodLoss | 13, 12 | Range | 11 | Softmax | 13, 11, 1 | SoftmaxCrossEntropyLoss | 13, 12 |
|