ValueError: Please provide model inputs as a list or tuple of 2 or 3 elements: (input, target)
报错信息
Traceback (most recent call last):
File "vae.py", line 170, in <module>
train_model(vae)
File "vae.py", line 161, in train_model
vae.fit(sequence, epochs=epochs)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 819, in fit
use_multiprocessing=use_multiprocessing)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 235, in fit
use_multiprocessing=use_multiprocessing)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 593, in _process_training_inputs
use_multiprocessing=use_multiprocessing)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 706, in _process_inputs
use_multiprocessing=use_multiprocessing)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/data_adapter.py", line 952, in __init__
**kwargs)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/data_adapter.py", line 767, in __init__
dataset = standardize_function(dataset)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 660, in standardize_function
standardize(dataset, extract_tensors_from_dataset=False)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 2346, in _standardize_user_data
all_inputs, y_input, dict_inputs = self._build_model_with_inputs(x, y)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 2523, in _build_model_with_inputs
inputs, targets, _ = training_utils.extract_tensors_from_dataset(inputs)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/training_utils.py", line 1678, in extract_tensors_from_dataset
inputs, targets, sample_weight = unpack_iterator_input(iterator)
File "/home/fanjiarong/.local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/training_utils.py", line 1703, in unpack_iterator_input
'Received %s' % next_element)
ValueError: Please provide model inputs as a list or tuple of 2 or 3 elements: (input, target) or (input, target, sample_weights)
Received tf.Tensor(
[[0.49803922 0.27058825 0.29803923 ... 0. 0. 0. ]
[0.49803922 0.27058825 0.29803923 ... 0. 0. 0. ]
[0.49803922 0.27058825 0.29803923 ... 0. 0. 0. ]
...
[0.49803922 0.27058825 0.29803923 ... 0. 0. 0. ]
[0.49803922 0.27058825 0.29803923 ... 0. 0. 0. ]
[0.49803922 0.27058825 0.29803923 ... 0. 0. 0. ]], shape=(128, 7744), dtype=float32)
2022-04-01 21:25:41.965783: W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing GeneratorDataset iterator: Cancelled: Operation was cancelled
分析程序
初始程序如下所示,在实现AE训练中的fit() 函数报错,原因为函数接受的参数为向量化的种子文件(input ),希望的参数为(input, target) or (input, target, sample_weights) 。我们需要明确对于分类问题,target 应为input 对应的类别,训练数据中包含数据及类别,可以直接读取;而对于自编码器target 应为input 对应的重构,需要将input 输入AE网络中进行重构,此处使用fit() 函数存在不妥。
class TrainSequence(keras.utils.Sequence):
def __init__(self, input_file_dir, batch_size, configs = configs):
pass
def __len__(self):
pass
def __getitem__(self, idx):
batch_names = self.input_files[
idx * self.batch_size: (idx + 1) * self.batch_size
]
X_length = self.inpurt_sqrt_dim * self.inpurt_sqrt_dim
a = vectorize_file(batch_names[0], X_length)
b = vectorize_file(batch_names[1], X_length)
test = np.array([a,b])
return np.array([vectorize_file(file_name, X_length) for file_name in batch_names])
sequence = TrainSequence(input_dir_path, batch_size, configs)
vae.fit(sequence, epochs=epochs)
修改程序
通过对自编码器的原理及训练过程进行学习,我们使用新的训练方式,通过GradientTape 从头开始写训练/评估的循环,修改之后的代码如下所示。 tensorflow2.0 Seq2Seq多个输入时在model.fit()中使用生成器分批训练大量数据 自编码器(AutoEncoder)入门及TensorFlow实现 Tensorflow2 自定义训练
for epoch in range(epochs):
print('epoch: ', epoch)
for step, data in enumerate(sequence):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(keras.losses.binary_crossentropy(data, reconstruction))
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(kl_loss)
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
vae.save_weights("vae_model_weight")
对于自编码器使用GradientTape 从头开始写训练的循环可以避免上述错误。对于训练循环来说,主要包括下面几个部分:
- 用一个
for 循环来控制训练的轮次 - 在每轮训练过程中,用一个
for 循环来控制训练的批次 - 在每个批次中,构建一个
GradientTape() 域 - 在这个域中,我们调用模型的前向传播,并计算loss
- 在域之外,我们计算
loss 对模型的参数的梯度 - 根据梯度,使用优化器更新模型的权重
|