| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 网络协议 -> 01-计算机网络 -> 正文阅读 |
|
[网络协议]01-计算机网络 |
文章目录
简述一下计算机网络体系结构计算机网络中有OSI网络分层模型、TCP/IP网络分层模型和五层协议参考模型,其中:
TCP/IP协议簇如下: 应用层应用层(application-layer)的任务是通过应用进程间的交互来完成特定网络应用。应用层协议定义的是应用进程(进程:主机中正在运行的程序)间的通信和交互的规则。对于不同的网络应用需要不同的应用层协议。在互联网中应用层协议很多,如域名系统DNS,支持万维网应用的 HTTP协议,支持电子邮件的 SMTP协议等等。我们把应用层交互的数据单元称为报文。 域名系统
HTTP协议
运输层运输层(transport layer)的主要任务就是负责向两台主机进程之间的通信提供通用的数据传输服务。应用进程利用该服务传送应用层报文。“通用的”是指并不针对某一个特定的网络应用,而是多种应用可以使用同一个运输层服务。由于一台主机可同时运行多个线程,因此运输层有复用和分用的功能。所谓复用就是指多个应用层进程可同时使用下面运输层的服务,分用和复用相反,是运输层把收到的信息分别交付上面应用层中的相应进程。 运输层主要使用以下两种协议:
网络层在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。 在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组和包进行传送。在 TCP/IP 体系结构中,由于网络层使用 IP 协议,因此分组也叫 IP 数据报 ,简称 数据报。 这里要注意:不要把运输层的“用户数据报 UDP ”和网络层的“ IP 数据报”弄混。另外,无论是哪一层的数据单元,都可笼统地用“分组”来表示。 这里强调指出,网络层中的“网络”二字已经不是我们通常谈到的具体网络,而是指计算机网络体系结构模型中第三层的名称. 互联网是由大量的异构(heterogeneous)网络通过路由器(router)相互连接起来的。互联网使用的网络层协议是无连接的网际协议(Internet Protocol)和许多路由选择协议,因此互联网的网络层也叫做网际层或IP层。 数据链路层数据链路层(data link layer)通常简称为链路层。两台主机之间的数据传输,总是在一段一段的链路上传送的,这就需要使用专门的链路层的协议。 在两个相邻节点之间传送数据时,数据链路层将网络层交下来的 IP 数据报组装成帧,在两个相邻节点间的链路上传送帧。每一帧包括数据和必要的控制信息(如同步信息,地址信息,差错控制等)。 在接收数据时,控制信息使接收端能够知道一个帧从哪个比特开始和到哪个比特结束。这样,数据链路层在收到一个帧后,就可从中提出数据部分,上交给网络层。 控制信息还使接收端能够检测到所收到的帧中有无差错。如果发现差错,数据链路层就简单地丢弃这个出了差错的帧,以避免继续在网络中传送下去白白浪费网络资源。如果需要改正数据在链路层传输时出现差错(这就是说,数据链路层不仅要检错,而且还要纠错),那么就要采用可靠性传输协议来纠正出现的差错。这种方法会使链路层的协议复杂些。 物理层在物理层上所传送的数据单位是比特。 物理层(physical layer)的作用是实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异, 使其上面的数据链路层不必考虑网络的具体传输介质是什么。“透明传送比特流”表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的。 在互联网使用的各种协中最重要和最著名的就是 TCP/IP 两个协议。现在人们经常提到的TCP/IP并不一定单指TCP和IP这两个具体的协议,而往往表示互联网所使用的整个TCP/IP协议族。 TCP与UDP协议如果设计一个聊天系统,应该用 TCP 还是 UDP?为什么?TCP与UDP的区别主要有:
现在的移动端IM、推送系统,既面对移动互联网的不确定性,又面对智能终端频繁的系统休眠、网络切换,还要考虑服务端的承载成本,对于在线服务而言UDP是比TCP更适合的方式。但是由于数据完整性、安全性的需要,又不应完全放弃TCP的可靠与安全。 所以,个人认为,更恰当的方式应该是:两种通信协议同时使用,各有侧重。UDP用于保持大量终端的在线与控制,应用与业务则通过TCP去实现。事实上,这个也是即时通讯巨头QQ所采用的方式。 早期的时候,QQ还是主要使用TCP协议,而后来QQ包含了文本、语音、图片、视频等等消息类型,传统的文本信息显然不是重头戏了,因此实际中QQ使用的协议包含了UDP、TCP、HTTP这三种。 TCP 如何保证传输可靠性?对于可靠性,TCP 通过以下方式进行保证:
ARQ协议自动重传请求(Automatic Repeat-reQuest,ARQ)是OSI模型中数据链路层和传输层的错误纠正协议之一。它通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输。如果发送方在发送后一段时间之内没有收到确认帧,它通常会重新发送。ARQ包括停止等待ARQ协议和连续ARQ协议。 停止等待ARQ协议停止等待协议是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认(回复ACK)。如果过了一段时间(超时时间后),还是没有收到 ACK 确认,说明没有发送成功,需要重新发送,直到收到确认后再发下一个分组。 在停止等待协议中,若接收方收到重复分组,就丢弃该分组,但同时还要发送确认。 优缺点:
1) 无差错情况: 发送方发送分组,接收方在规定时间内收到,并且回复确认.发送方再次发送。 2) 出现差错情况(超时重传): 停止等待协议中超时重传是指只要超过一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送过的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重传时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为 自动重传请求 ARQ 。另外在停止等待协议中若收到重复分组,就丢弃该分组,但同时还要发送确认。连续 ARQ 协议 可提高信道利用率。发送维持一个发送窗口,凡位于发送窗口内的分组可连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组位置的所有分组都已经正确收到了。 3) 确认丢失和确认迟到
连续ARQ协议连续 ARQ 协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组可以连续发送出去,而不需要等待对方确认。接收方一般采用累计确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已经正确收到了。 优缺点:
什么是 TCP 滑动窗口?滑动窗口协议,是传输层进行流量控制的一种措施,接收方通过通告发送方自己的窗口大小,从而控制发送方的发送速度,从而达到防止发送方发送速度过快而导致自己被淹没的目的。将窗口字段设置为 0,则发送方不能发送数据。 TCP 的滑动窗口解决了端到端的流量控制问题,允许接受方对传输进行限制,直到它拥有足够的缓冲空间来容纳更多的数据。 什么是拥塞控制?在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。 为了进行拥塞控制,TCP 发送方要维持一个 拥塞窗口(cwnd) 的状态变量。拥塞控制窗口的大小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接受窗口中较小的一个。 TCP的拥塞控制采用了四种算法,即 慢开始 、 拥塞避免 、快重传 和 快恢复。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。
TCP 三次握手和四次挥手是什么?三次握手假设 A 为客户端,B 为服务器端。
简化一下三次握手的流程: 刚开始客户端处于 closed 的状态,服务端处于 listen 状态。然后:
三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的。 第一次握手:客户端什么都不能确认;服务端确认了对方发送正常,自己接收正常; 第二次握手:客户端确认自己发送、接收正常,对方发送、接收正常;服务端确认对方发送正常,自己接收正常; 第三次握手:客户端确认了自己发送、接收正常,对方发送、接收正常;服务端确认了自己发送、接收正常,对方发送、接收正常。 所以三次握手才能确认双方发送与接收功能都正常,缺一不可。 第2次握手传回了ACK,为什么也传回了SYN?接收端传回发送端所发送的ACK是为了告诉客户端,我接收到的信息确实就是你所发送的信号了,这表明从客户端到服务端的通信是正常的。而回传SYN则是为了建立并确认从服务端到客户端的通信。
为什么要三次握手?两次握手不行吗?第三次握手是为了防止SYN泛洪攻击,防止已失效的连接请求到达服务器,让服务器错误打开连接。
对于SYN泛洪攻击的防范,优化主机系统设置是常用的手段。如降低SYN timeout时间,使得主机尽快释放半连接的占用;又比如采用SYN cookie设置,如果短时间内连续收到某个IP的重复SYN请求,则认为受到了该IP的攻击,丢弃来自该IP的后续请求报文。此外合理地采用防火墙等外部网络安全设施也可缓解SYN泛洪攻击。 四次挥手假设 A 为客户端,B 为服务器端。
任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了TCP连接。 四次挥手的流程: 刚开始双方都处于 established 状态,假如是客户端先发起关闭请求,则:
为什么要四次挥手?TCP是全双工通信,服务端和客服端都能发送和接收数据。TCP在断开连接时,需要服务端和客服端都确定对方将不再发送数据。
为何一定要等 2MSL ?客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器会发送 FIN 连接释放报文。 一定要等 2MSL 有两个理由:
什么是 TCP 粘包/拆包?有什么解决办法呢?TCP 粘包/拆包 就是你基于 TCP 发送数据的时候,出现了多个字符串“粘”在了一起或者一个字符串被“拆”开的问题。我们发送两条消息:ABC 和 DEF,可能一次就把两条消息接收完了,即 ABCDEF;也可能分成了好多次,比如 AB、CD 和 EF。 对方一次性接收了多条消息这种现象,我们就称之为粘包现象。 对方多次接收了不完整消息这种现象,我们就称之为拆包(半包)现象。 粘包TCP 发送消息的时候是有缓冲区的,当消息的内容远小于缓冲区的时候,这条消息不会立马发送出去,而是跟其它的消息合并之后再发送出去,这样合并发送是明显能够提高效率的。但是,对方接收到的消息就是一个粘包,无法有效区分出来到底是几条消息。当然,接收消息也是会通过 TCP 的缓冲区的,如果接收方读取得不及时,也有可能出现粘包现象。 可见,出现粘包的原因无非两种:
拆包类比粘包,如果发送的消息太大,已经超过了缓冲区的大小,这时候就必须拆分发送,也就形成了拆包现象。还有一种情况,网络协议各层是有最大负载的,所以,对应到各种协议它们是有最大发送数据的限制的,这种可以发送的最大数据称作 MTU(Maximum Transmission Unit,最大传输单元)。 可见,出现拆包的原因有两种:
本质原因TCP 是流式协议,消息无边界。(UDP 协议不会出现粘包 / 拆包现象,它的消息是有明确边界的。UDP 像邮寄的包裹,虽然一次运输多个,但每个包裹都有“界限”,一个一个签收, 所以无粘包、半包问题)。 如何解决粘包/拆包?解决问题的根本手段就是:找出消息的边界。可以通过封装成帧(Framing)的三种方法:
HTTP协议什么是HTTP?HTTP 协议,是 Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的传送协议,它是一个在计算机世界里专门在两点之间传输文字、图片、音频、视频等超文本数据的约定和规范。 主要特点如下:
HTTP报文中请求头和响应头都有什么信息?HTTP 协议的请求报文和响应报文的结构基本相同,由三大部分组成:
HTTP 协议规定报文必须有 header,但可以没有 body,而且在 header 之后必须要有一个“空行”。 上面的起始行与头部字段又经常和称为**“请求头”或“响应头“**。其中:
HTTP 协议规定了非常多的头部字段,实现各种各样的功能,但基本上可以分为四大类:
HTTP有哪些状态码?状态码分类
常用状态码
HTTP与HTTPS有什么区别?端口 :HTTP的URL由“http://”起始且默认使用端口80,而HTTPS的URL由“https://”起始且默认使用端口443。 安全性和资源消耗: HTTP协议运行在TCP之上,所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份。HTTPS是运行在SSL/TLS之上的HTTP协议,SSL/TLS 运行在TCP之上(HTTP + 加密 + 认证 + 完整性保护 = HTTPS )。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。所以说,HTTP 安全性没有 HTTPS高,但是 HTTPS 比HTTP耗费更多服务器资源。
HTTP 1.0和HTTP 1.1的主要区别是什么?HTTP1.0最早在网页中使用是在1996年,那个时候只是使用一些较为简单的网页上和网络请求上,而HTTP1.1则在1999年才开始广泛应用于现在的各大浏览器网络请求中,同时HTTP1.1也是当前使用最为广泛的HTTP协议。 主要区别主要体现在:
HTTP是不保存状态的协议,如何保存用户状态?HTTP 是一种不保存状态,即无状态(stateless)协议。也就是说 HTTP 协议自身不对请求和响应之间的通信状态进行保存。那么我们保存用户状态呢?Session 机制的存在就是为了解决这个问题,Session 的主要作用就是通过服务端记录用户的状态。典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了(一般情况下,服务器会在一定时间内保存这个 Session,过了时间限制,就会销毁这个Session)。 在服务端保存 Session 的方法很多,最常用的就是内存和数据库(比如是使用内存数据库redis保存)。既然 Session 存放在服务器端,那么我们如何实现 Session 跟踪呢?大部分情况下,我们都是通过在 Cookie 中附加一个 Session ID 来方式来跟踪。 Cookie 被禁用怎么办? 最常用的就是利用 URL 重写把 Session ID 直接附加在URL路径的后面。 HTTP长连接,短连接区别?在HTTP/1.0中默认使用短连接。也就是说,客户端和服务器每进行一次HTTP操作,就建立一次连接,任务结束就中断连接。当客户端浏览器访问的某个HTML或其他类型的Web页中包含有其他的Web资源(如JavaScript文件、图像文件、CSS文件等),每遇到这样一个Web资源,浏览器就会重新建立一个HTTP会话。 而从HTTP/1.1起,默认使用长连接,用以保持连接特性。使用长连接的HTTP协议,会在响应头加入这行代码:
在使用长连接的情况下,当一个网页打开完成后,客户端和服务器之间用于传输HTTP数据的TCP连接不会关闭,客户端再次访问这个服务器时,会继续使用这一条已经建立的连接。Keep-Alive不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如Apache)中设定这个时间。实现长连接需要客户端和服务端都支持长连接。 HTTP协议的长连接和短连接,实质上是TCP协议的长连接和短连接。 HTTP 缓存机制了解吗?
强制缓存和协商缓存都存在的情况下,先判断强制缓存是否生效,如果生效,不用发起请求,直接用缓存。如果强制缓存不生效再发起请求判断协商缓存。
说一说POST与GET有哪些区别?GET 用于获取资源,而 POST 用于传输实体主体。GET 和 POST 的请求都能使用额外的参数,但是 GET 的参数是以查询字符串出现在 URL 中,而 POST 的参数存储在实体主体中。不能因为 POST 参数存储在实体主体中就认为它的安全性更高,因为照样可以通过一些抓包工具(Fiddler)查看。
其他问题Cookie的作用是什么?和Session有什么区别?Cookie 和 Session都是用来跟踪浏览器用户身份的会话方式,但是两者的应用场景不太一样。 Cookie 一般用来保存用户信息 比如①我们在 Cookie 中保存已经登录过得用户信息,下次访问网站的时候页面可以自动帮你登录的一些基本信息给填了;②一般的网站都会有保持登录也就是说下次你再访问网站的时候就不需要重新登录了,这是因为用户登录的时候我们可以存放了一个 Token 在 Cookie 中,下次登录的时候只需要根据 Token 值来查找用户即可(为了安全考虑,重新登录一般要将 Token 重写);③登录一次网站后访问网站其他页面不需要重新登录。Session 的主要作用就是通过服务端记录用户的状态。 典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了。 Cookie 数据保存在客户端(浏览器端),Session 数据保存在服务器端。 Cookie 存储在客户端中,而Session存储在服务器上,相对来说 Session 安全性更高。如果要在 Cookie 中存储一些敏感信息,不要直接写入 Cookie 中,最好能将 Cookie 信息加密然后使用到的时候再去服务器端解密。 URI和URL的区别是什么?
URI的作用像身份证号一样,URL的作用更像家庭住址一样。URL是一种具体的URI,它不仅唯一标识资源,而且还提供了定位该资源的信息。 简述一下 ping 的原理?ping 是基于 ICMP 协议工作的。ICMP全称Internet Control Message Protocol,就是互联网控制报文协议。这里面的关键词是“控制”,那具体是怎么控制的呢? 网络包在异常负责的网络环境中传输时,会遇到各种问题,当遇到问题时,要传出消息,报告情况,这样才能调整传输策略。 ICMP 报文是封装在 IP 包里面的。因为传输指令的时候,肯定需要源地址和目标地址。如下图: 常用的ping 就是查询报文,是一种主动请求,并且获得主动应答的 ICMP 协议。 IP 地址与 MAC 地址的区别?我们可以归纳出IP地址和MAC地址相同点是它们都唯一,不同的特点主要有: 1. 对于网络上的某一设备,如一台计算机或一台路由器,其IP地址可变(但必须唯一),而MAC地址不可变。我们可以根据需要给一台主机指定任意的IP地址,如我们可以给局域网上的某台计算机分配IP地址为192.168.0.112 ,也可以将它改成192.168.0.200。而任一网络设备(如网卡,路由器)一旦生产出来以后,其MAC地址永远唯一且不能由用户改变。 请求转发和重定向的区别?转发(Forward):服务器直接访问目标资源地址的URL,读取并发送目标URL返回的内容到浏览器,这个过程浏览器是不知道,浏览器的地址栏还是原来的地址。 转发的路径必须是同一个web容器下的URL,其不能转向到其他的web路径上去,中间传递的也是自己的容器内的request,故转发页面和转发到的页面可以共享request里面的数据。 重定向(Redirect):是服务器根据处理逻辑,返回一个302状态码和新请求地址,告诉浏览器重新去请求这个URL,这时浏览器的地址栏就会变成新的URL。也就是收重定向是发生在客户端的跳转,其实是两次请求,所以这个新地址可以重定向到新的的URL,并且两次请求的request是不共享的。 形象的解释,你去拖人办事:
总结下来,转发是服务器行为,重定向是客户端行为。区别主要在于:
重定向常见应用 —— 短连接跳转
DNS 的解析过程?主机向本地域名服务器的查询一般都是采用递归查询。所谓递归查询就是:如果主机所询问的本地域名服务器不知道被查询的域名的 IP 地址,那么本地域名服务器就以 DNS 客户的身份,向根域名服务器继续发出查询请求报文(即替主机继续查询),而不是让主机自己进行下一步查询。因此,递归查询返回的查询结果或者是所要查询的 IP 地址,或者是报错,表示无法查询到所需的 IP 地址。 本地域名服务器向根域名服务器的查询的迭代查询。迭代查询的特点:当根域名服务器收到本地域名服务器发出的迭代查询请求报文时,要么给出所要查询的 IP 地址,要么告诉本地服务器:“你下一步应当向哪一个域名服务器进行查询”。然后让本地服务器进行后续的查询。根域名服务器通常是把自己知道的顶级域名服务器的 IP 地址告诉本地域名服务器,让本地域名服务器再向顶级域名服务器查询。顶级域名服务器在收到本地域名服务器的查询请求后,要么给出所要查询的 IP 地址,要么告诉本地服务器下一步应当向哪一个权限域名服务器进行查询。最后,本地域名服务器得到了所要解析的 IP 地址或报错,然后把这个结果返回给发起查询的主机。 在浏览器中输入 URL 地址到显示主页的过程,整个过程会使用哪些协议
图解(图片来源:《图解HTTP》): 总体来说分为以下几个过程:
如何缓解DDoS 攻击?DDoS 的前身是 DoS(Denail of Service),即拒绝服务攻击,指利用大量的合理请求,来占用过多的目标资源,从而使目标服务无法响应正常请求。 DDoS(Distributed Denial of Service) 则是在 DoS 的基础上,采用了分布式架构,利用多台主机同时攻击目标主机。这样,即使目标服务部署了网络防御设备,面对大量网络请求时,还是无力应对。 从攻击的原理上来看,DDoS 可以分为下面几种类型。
比如,构造大量不同的域名来攻击 DNS 服务器,就会导致 DNS 服务器不停执行迭代查询,并更新缓存。这会极大地消耗 DNS 服务器的资源,使 DNS 的响应变慢。 实际上,SYN Flood(泛洪攻击)正是互联网中最常见的 DDoS 攻击方式。上面TCP三次握手处已经介绍过它的原理:
这种等待状态的 TCP 连接,通常也称为半开连接。由于连接表的大小有限,大量的半开连接就会导致连接表迅速占满,从而无法建立新的 TCP 连接。 那么如何缓解DDOS攻击呢?
什么是XSS攻击?如何防范?XSS是一种经常出现在web应用中的计算机安全漏洞,与SQL注入一起成为web中最主流的攻击方式。 XSS是指恶意攻击者利用网站没有对用户提交数据进行转义处理或者过滤不足的缺点,进而添加一些脚本代码嵌入到web页面中去,使别的用户访问都会执行相应的嵌入代码,从而盗取用户资料、利用用户身份进行某种动作或者对访问者进行病毒侵害的一种攻击方式。 XSS攻击的危害
原因解析
XSS 攻击分类
漏洞产生的原因是攻击者注入的数据反映在响应中。一个典型的非持久性XSS攻击包含一个带XSS攻击向量的链接(即每次攻击需要用户的点击),例如,正常发送消息:
接收者将会接收信息并显示Hello,World;但是,非正常发送消息:
接收者接收消息显示的时候将会弹出警告窗口!
XSS攻击向量(一般指XSS攻击代码)存储在网站数据库,当一个页面被用户打开的时候执行。也就是说,每当用户使用浏览器打开指定页面时,脚本便执行。 与非持久性XSS攻击相比,持久性XSS攻击危害性更大。从名字就可以了解到,持久性XSS攻击就是将攻击代码存入数据库中,然后客户端打开时就执行这些攻击代码。 例如,留言板表单中的表单域:
正常操作流程是:用户是提交相应留言信息 —— 将数据存储到数据库 —— 其他用户访问留言板,应用去数据并显示;而非正常操作流程是攻击者在value填写:
并将数据提交、存储到数据库中;当其他用户取出数据显示的时候,将会执行这些攻击性代码。 修复漏洞方针 漏洞产生的根本原因是太相信用户提交的数据,对用户所提交的数据过滤不足所导致的,因此解决方案也应该从这个方面入手,具体方案包括:
需要注意的是,在有些应用中是允许html标签出现的,甚至是Javascript代码出现。因此,我们在过滤数据的时候需要仔细分析哪些数据是有特殊要求(例如输出需要html代码、Javascript代码拼接、或者此表单直接允许使用等等),然后区别处理! 什么是数字签名与数字证书?数字签名 为了避免数据在传输过程中被替换,比如黑客修改了你的报文内容,但是你并不知道,所以我们让发送端做一个数字签名,把数据的摘要消息进行一个加密,比如 MD5,得到一个签名,和数据一起发送。然后接收端把数据摘要进行 MD5 加密,如果和签名一样,则说明数据确实是真的。 数字证书 对称加密中,双方使用公钥进行解密。虽然数字签名可以保证数据不被替换,但是数据是由公钥加密的,如果公钥也被替换,则仍然可以伪造数据,因为用户不知道对方提供的公钥其实是假的。所以为了保证发送方的公钥是真的,CA 证书机构会负责颁发一个证书,里面的公钥保证是真的,用户请求服务器时,服务器将证书发给用户,这个证书是经由系统内置证书的备案的。 |
|
网络协议 最新文章 |
使用Easyswoole 搭建简单的Websoket服务 |
常见的数据通信方式有哪些? |
Openssl 1024bit RSA算法---公私钥获取和处 |
HTTPS协议的密钥交换流程 |
《小白WEB安全入门》03. 漏洞篇 |
HttpRunner4.x 安装与使用 |
2021-07-04 |
手写RPC学习笔记 |
K8S高可用版本部署 |
mySQL计算IP地址范围 |
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 | -2024/12/27 14:29:32- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |
数据统计 |