MSL
MSL(Maximum Segment Lifetime)最大报文生存时间 每个TCP实现必须选择一个MSL。它是任何报文段被丢弃前在网络内的最长时间。这个时间是有限的,因为TCP报文段以IP数据报在网络内传输,而IP数据报则有限制其生存时间的TTL时间。RFC 793指出MSL为2分钟,现实中常用30秒或1分钟。 2MSL 当TCP执行主动关闭,并发出最后一个ACK,该链接必须在TIME_WAIT状态下停留的时间为2MSL。这样可以(1)让TCP再次发送最后的ACK以防这个ACK丢失(被动关闭的一方超时并重发最后的FIN);保证TCP的可靠的全双工连接的终止。(2)允许老的重复分节在网络中消失。参考文章《unix网络编程》(3)TCP连接的建立和终止 在TIME_WAIT状态 时两端的端口不能使用,要等到2MSL时间结束才可继续使用。当连接处于2MSL等待阶段时任何迟到的报文段都将被丢弃。不过在实际应用中可以通过设置 SO_REUSEADDR选项达到不必等待2MSL时间结束再使用此端口。
TIME_WAIT存在的原因
1. 实现tcp全双工连接的可靠释放
由TCP状态变迁图可知,假设发起主动关闭的一方(client)最后发送的ACK在网络中丢失,由于TCP协议的重传机制,执行被动关闭的一方(server)将会重发其FIN,在该FIN到达client之前,client必须维护这条连接状态,也就说这条TCP连接所对应的资源(client方的local_ip,local_port)不能被立即释放或重新分配,直到另一方重发的FIN达到之后,client重发ACK后,经过2MSL时间周期没有再收到另一方的FIN之后,该TCP连接才能恢复初始的CLOSED状态。如果主动关闭一方不维护这样一个TIME_WAIT状态,那么当被动关闭一方重发的FIN到达时,主动关闭一方的TCP传输层会用RST包响应对方,这会被对方认为是有错误发生,然而这事实上只是正常的关闭连接过程,并非异常。
2. 使旧的数据包在网络因过期而失效
为说明这个问题,我们先假设TCP协议中不存在TIME_WAIT状态的限制,再假设当前有一条TCP连接:(local_ip, local_port, remote_ip,remote_port),因某些原因,我们先关闭,接着很快以相同的四元组建立一条新连接。本文前面介绍过,TCP连接由四元组唯一标识,因此,在我们假设的情况中,TCP协议栈是无法区分前后两条TCP连接的不同的,在它看来,这根本就是同一条连接,中间先释放再建立的过程对其来说是“感知”不到的。这样就可能发生这样的情况:前一条TCP连接由local peer发送的数据到达remote peer后,会被该remot peer的TCP传输层当做当前TCP连接的正常数据接收并向上传递至应用层(而事实上,在我们假设的场景下,这些旧数据到达remote peer前,旧连接已断开且一条由相同四元组构成的新TCP连接已建立,因此,这些旧数据是不应该被向上传递至应用层的),从而引起数据错乱进而导致各种无法预知的诡异现象。作为一种可靠的传输协议,TCP必须在协议层面考虑并避免这种情况的发生,这正是TIME_WAIT状态存在的第2个原因。
总结
具体而言,local peer主动调用close后,此时的TCP连接进入TIME_WAIT状态,处于该状态下的TCP连接不能立即以同样的四元组建立新连接,即发起active close的那方占用的local port在TIME_WAIT期间不能再被重新分配。由于TIME_WAIT状态持续时间为2MSL,这样保证了旧TCP连接双工链路中的旧数据包均因过期(超过MSL)而消失,此后,就可以用相同的四元组建立一条新连接而不会发生前后两次连接数据错乱的情况。
深入说TIME_WAIT状态的存在的两个理由
TIME_WAIT状态的存在有两个理由:(1)让4次握手关闭流程更加可靠;4次握手的最后一个ACK是是由主动关闭方发送出去的,若这个ACK丢失,被动关闭方会再次发一个FIN过来。若主动关闭方能够保持一个2MSL的TIME_WAIT状态,则有更大的机会让丢失的ACK被再次发送出去。(2)防止lost duplicate对后续新建正常链接的传输造成破坏。lost duplicate在实际的网络中非常常见,经常是由于路由器产生故障,路径无法收敛,导致一个packet在路由器A,B,C之间做类似死循环的跳转。IP头部有个TTL,限制了一个包在网络中的最大跳数,因此这个包有两种命运,要么最后TTL变为0,在网络中消失;要么TTL在变为0之前路由器路径收敛,它凭借剩余的TTL跳数终于到达目的地。但非常可惜的是TCP通过超时重传机制在早些时候发送了一个跟它一模一样的包,并先于它达到了目的地,因此它的命运也就注定被TCP协议栈抛弃。另外一个概念叫做incarnation connection,指跟上次的socket pair一摸一样的新连接,叫做incarnation of previous connection。lost duplicate加上incarnation connection,则会对我们的传输造成致命的错误。大家都知道TCP是流式的,所有包到达的顺序是不一致的,依靠序列号由TCP协议栈做顺序的拼接;假设一个incarnation connection这时收到的seq=1000, 来了一个lost duplicate为seq=1000, len=1000, 则tcp认为这个lost duplicate合法,并存放入了receive buffer,导致传输出现错误。通过一个2MSL TIME_WAIT状态,确保所有的lost duplicate都会消失掉,避免对新连接造成错误。
TIME_WAIT如何避免
- 首先服务器可以设置SO_REUSEADDR套接字选项来通知内核,如果端口忙,但TCP连接位于TIME_WAIT状态时可以重用端口。在一个非常有用的场景就是,如果你的服务器程序停止后想立即重启,而新的套接字依旧希望使用同一端口,此时SO_REUSEADDR选项就可以避免TIME_WAIT状态。
- 相关参数优化调整(当然得根据服务器的实际情况配置,这里着重讲参数意义):
既然知道了TIME_WAIT的用意了,尽量按照TCP的协议规定来调整,对于tw的reuse、recycle其实是违反TCP协议规定的,服务器资源允许、负载不大的条件下,尽量不要打开,当出现TCP: time wait bucket table overflow,尽量调大下面参数: tcp_max_tw_buckets = 256000 调整次参数的同时,要调整TIME_WAIT_2到TIME_WAIT的超时时间,默认是60s,优化到30s: net.ipv4.tcp_fin_timeout = 30 其它TCP本身的配合参数类似与synack重传次数、syn重传次数等以后介绍,优化后也是有所益处的。 下面再说一下linux里TIME_WAIT专有的优化参数reuse、recycle,默认也都是关闭的,这两个参数必须在timestamps打开的前提下才能生效使用 net.ipv4.tcp_timestamps = 1 net.ipv4.tcp_tw_reuse = 1 机器作为客户端时起作用,开启后time_wait在一秒内回收 net.ipv4.tcp_tw_recycle = 0 (不要开启,现在互联网NAT结构很多,可能直接无法三次握手)、
注意事项
tcp_tw_recycle:顾名思义就是回收TIME_WAIT连接。可以说这个内核参数已经变成了大众处理TIME_WAIT的万金油,如果你在网络上搜索TIME_WAIT的解决方案,十有八九会推荐设置它,不过这里隐藏着一个不易察觉的陷阱:
当多个客户端通过NAT方式联网并与服务端交互时,服务端看到的是同一个IP,也就是说对服务端而言这些客户端实际上等同于一个,可惜由于这些客户端的时间戳可能存在差异,于是乎从服务端的视角看,便可能出现时间戳错乱的现象,进而直接导致时间戳小的数据包被丢弃。参考:tcp_tw_recycle和tcp_timestamps导致connect失败问题。
tcp_tw_reuse:顾名思义就是复用TIME_WAIT连接。当创建新连接的时候,如果可能的话会考虑复用相应的TIME_WAIT连接。通常认为「tcp_tw_reuse」比「tcp_tw_recycle」安全一些,这是因为一来TIME_WAIT创建时间必须超过一秒才可能会被复用;二来只有连接的时间戳是递增的时候才会被复用。官方文档里是这样说的:如果从协议视角看它是安全的,那么就可以使用。这简直就是外交辞令啊!按我的看法,如果网络比较稳定,比如都是内网连接,那么就可以尝试使用。
不过需要注意的是在哪里使用,既然我们要复用连接,那么当然应该在连接的发起方使用,而不能在被连接方使用。举例来说:客户端向服务端发起HTTP请求,服务端响应后主动关闭连接,于是TIME_WAIT便留在了服务端,此类情况使用「tcp_tw_reuse」是无效的,因为服务端是被连接方,所以不存在复用连接一说。让我们延伸一点来看,比如说服务端是PHP,它查询另一个MySQL服务端,然后主动断开连接,于是TIME_WAIT就落在了PHP一侧,此类情况下使用「tcp_tw_reuse」是有效的,因为此时PHP相对于MySQL而言是客户端,它是连接的发起方,所以可以复用连接。
说明:如果使用tcp_tw_reuse,请激活tcp_timestamps,否则无效。
|