| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 网络协议 -> Xilinx平台SRIO介绍(二)SRIO IP核基础知识 -> 正文阅读 |
|
[网络协议]Xilinx平台SRIO介绍(二)SRIO IP核基础知识 |
使用SRIO IP核必须掌握的基础知识!理解了这篇,剩下的只是代码罢了。 汇总篇: 目录 前言:SRIO 、RapidIO、GT 有什么关系?
一、SRIO IP核概述1.1概述????????RapidIO互连架构,与目前大多数流行的集成通信处理器、主机处理器和网络数字信号处理器兼容,是一种高性能、包交换的互连技术。它能够满足高性能嵌入式工业在系统内部互连中对可靠性、增加带宽,和更快的总线速度的需求。 ????????RapidIO标准定义为三层:逻辑层、传输层和物理层。逻辑层定义了总体协议和包格式。它包括了RapidIO设备发起和完成事务的必要信息。传输层提供了RapidIO包传输过程中的路由信息。物理层描述设备级接口细节,例如包传输机制、流控、电气特性和低级错误管理。这种划分不需要对传输层或物理层规范进行修改,就可以灵活的给逻辑层规范添加新的事务类型。 ????????RapidIO核的设计标准来源于RapidIO Interconnect Specification rev2.2,它支持1x,2x和4x三种模式,每通道的速度支持1.25Gbaud,2.5Gbaud,3.125Gbaud,5.0Gbaud和6.25Gbaud五种。 ????????RapidIO核分为逻辑层(Logical Layer),缓冲(Buffer)和物理层(Physical Layer)三个部分。 ???????1.2?SRIO核架构RapidIO核分为逻辑层(LOG),缓冲(BUF)和物理层(PHY)三个部分。如下图所示: ? 二、接口介绍RapidIO核把三个子核封装在一起,它提供了一个高层次,低维护的接口。 先放一张总结性的脑图: ? 接下来我们详细介绍SRIO各子层的各个接口。 2.1逻辑层接口(重点)????????逻辑层(LOG)被划分成几个模块来控制并解析发送和接收数据包。逻辑层(LOG)有三个接口:用户接口(User Interface),传输接口(Transport Interface)和配置接口(Configuration Fabric Interface)。 下图是逻辑层接口的示意图: ? ?用户接口包括能发起和接收包的端口。当生成IP核的时候可以配置端口的数目和事务类型,同时也能通过AXI4-Lite接口发起维护事务对本地或者远程的寄存器进行访问与配置。 传输接口包含发送和接收两个端口,它是用来连接中间的Buffer,对于RapidIO的顶层模块来说,这两个接口不可见。 配置接口也包含两个端口。其中配置主机端口(Configuration Master Port)用来读写本地配置空间。逻辑配置寄存器端口(LOG Configuration Register Port),它可以用来读写一部分逻辑层或传输层配置寄存器。 对于RapidIO IP核来说,用户最需要关注的就是用户接口,下面着重介绍用户接口的相关内容。 ??用户接口包含I/O端口集和三个可选的端口,三个可选的端口分别为消息端口(Messaging Port),维护端口(Maintenance Port)和用户自定义端口(User-Defined Port)。这些接口都在模块的顶层,每种事务类型都在指定的端口上传输。其中,任何支持的I/O事务例如NWRITEs,NWRITE_Rs,SWRITEs,NREADs和RESPONSEs(不包括维护事务的responses)全部都在I/O端口上发送或者接收。消息(Message)事务能在I/O端口传输或者在消息端口传输,这取决于是否在IP核的配置选择分离I/O端口与Message端口。门铃(Doorbell)事务只能在I/O端口传输,而不能在Message端口上传输。维护事务包只能在维护端口上传输。如果事务是由用户自定义的一种不支持的类型,那么这类事务就可以在用户自定义端口上传输,如果用户自定义的端口在IP核的配置中未使能,那么用户自定义的包会被丢弃。 2.1.1 I/O端口I/O端口能被配置为两种类型:Condensed I/O或Initiator/Target。这两种类型可以在IP核的配置中进行选择。I/O端口的数据流协议是AXI4-Stream协议,它支持两种类型的包格式,分别是HELLO格式与SRIO Stream格式。
?Condensed I/O端口类型减少了用于发送和接收I/O包的端口数目。它只用一个AXI4-Stream通道来发送所有类型的包,同样,也只用一个AXI4-Stream通道去接收所有类型的包。Condensed I/O端口示意图如下:
??????? Initiator/Target端口类型把请求事务与响应事务分别处理,所以一共有4个AXI4-Stream通道用于I/O事务的传输。Initiator/Target端口的示意图如下图所示,其中灰色的箭头表示请求事务,黑色的箭头表示响应事务。 ????????本地设备(Local Device)生成的请求(Requests)通过ireq通道发送,远程设备(Remote Device)产生的响应包通过iresp通道接收来完成整个事务的交互过程。 ??远程设备(Remote Device)生成的请求(Requests)通过treq通道接收,本地设备(Local Device)产生的响应包通过tresp通道发送来完成整个事务的交互过程。 在顶层模块中,变量名与通道的对应关系如下:????
2.1.2消息端口????????消息端口是一个可选的接口,消息事务既能在I/O端口上发送,也能在独立的消息端口上发送。独立的消息端口类型为Initiator/Target类型。下图是消息端口的示意图: ? ????????????????本地设备(Local Device)生成的请求(Requests)通过msgireq通道发送,远程设备(Remote Device)产生的响应包通过msgiresp通道接收来完成整个事务的交互过程。 ????????远程设备(Remote Device)生成的请求(Requests)通过msgtreq通道接收,本地设备(Local Device)产生的响应包通过msgtresp通道发送来完成整个事务的交互过程。 ????????在顶层模块中,变量名与通道的对应关系如下:
2.1.3用户自定义端口????????用户自定义端口是一个可选的端口,它包括两个AXI4-Stream通道,一个用于发送另一个用来接收。用户自定义端口仅仅支持SRIO Stream格式的事务。下图是用户自定义端口的示意图: ? ? 在顶层模块中,变量名与接口的对应关系如下:
? 2.1.4维护端口维护端口使用的是AXI4-Lite接口协议,AXI4-Lite接口允许用户访问本地或远程配置空间。下图是AXI4-Lite维护端口示意图: ? ?????? 上图中从右到左的黑色箭头表示请求(Requests)通道,从左到右的灰色箭头表示响应(Responses)通道。每个通道有独立的ready/valid握手信号。 2.1.5状态(Status)用户接口的状态信号包括deviceid和port_decode_error,定义如下表所示
2.2 Buffer接口开门见山的说:所有Buffer层的接口对于RapidIO顶层都是不可见的。是不是松了一口气~ ????????Buffer的目的是对发送和接收的包进行缓冲。Buffer对于保证包发送和流控操作是非常有必要的,Xilinx提供了一个可配置的Buffer解决方案,可以在系统性能和资源利用率之间权衡选择。 发送Buffer负责把将要发出去的事务放到队列中,并对发往物理层(PHY)的包流进行管理。接收Buffer和发送Buffer的大小可以在IP核中配置为8、16或32个包的深度。发送Buffer是一个存储和转发缓冲区,它是用来降低包到包的延迟以最大化流吞吐量。发送Buffer必须保存每个包直到包被接收方成功接收,当接收方成功接收包以后,发送Buffer才会释放包来给其他包腾出空间。当流控(Flow Control)发生时,通常会有多个未发送的包滞留在发送Buffer中,发送Buffer会根据包的类型与优先级进行重新排序,然后按照响应包先发送,请求包后发送的顺序把发送Buffer中的包依次发出去。Buffer的另一个作用是处理跨时钟域的问题,当生成IP核的时候可以根据需求添加或者移除跨时钟域逻辑。对于多通道的RapidIO来说,由于物理层的时钟在start-up场景和traindown场景是动态的,所以推荐把跨时钟域逻辑加上,这样可以保证用户逻辑工作在已知的速率上。 接收Buffer类似于一个FIFO,它用来存储和转发接收通路上发送给逻辑层的数据。接收Buffer也包含跨时钟域逻辑,这可以保证逻辑层和物理层工作在不同的速率上,和发送Buffer一样,对于多通道RapidIO,推荐加上跨时钟域逻辑。 ????????Buffer层示意图如下:
? ?????? 由上图可知,在Buffer层的逻辑层与物理层两侧均有两个AXI4-Stream通道,一个为发送通道,另外一个为接收通道。还有一个AXI4-Lite通道用于去配置Buffer层的配置空间。所有Buffer层的接口对于RapidIO顶层都是不可见的。 2.3 物理层接口???????物理层(PHY)用来处理链路训练(Link Training),初始化(Initialization)和协议(Protocol),同时还包括包循环冗余校验码(CRC)与应答标识符的插入。物理层接口与高速串行收发器相连。串行收发器在IP核中被设计为一个外部的例化模块以降低用户使用模型的难度。物理层接口的示意图如下图所示: ? ??????? 物理层与Buffer层通过两个AXI4-Stream通道相连,同时物理层有一个通道的AXI4-Lite接口与配置结构相连,可以通过这个通道访问物理层的配置空间。物理层还通过一个串行接口(Serial Interface)与串行收发器(Serial Transceivers)相连。 2.4 寄存器空间RapidIO的寄存器空间包含: 能力寄存器空间(CAR) 命令和状态寄存器空间(CSR) CAR和CSR的寄存器一样都在逻辑层LOG实现。 更多寄存器空间内容请查阅《PG007》P.51 我们继续介绍重点内容HELLO包格式! 三、HELLO包格式(重点)????????为了简化RapidIO包的构建过程,RapidIO核的事务传输接口(ireq,treq,iresp,tresp)可以配置为HELLO(Header Encoded Logical Layer Optimized)格式。这种格式把包的包头(Header)域进行标准化,而且把包头和数据在接口上分开传输,这将简化控制逻辑并且允许数据与发送边界对齐,有助于数据的管理。 3.1HELLO格式及字段定义HELLO格式的包如下图所示:《PG007》P.76 保存,写包头数据的时候查阅~
?其中,各个字段的定义如下表所示:
3.2两种传输情况?????????????HELLO格式的包中Size域的值等于传输的字节的总数减1,Size域的有效值范围为0~255(特别注意:size以字节byte为单位!),对应于实际传输的字节数量1~256。HELLO格式中的size和address域必须对应于RapidIO包中有效的size,address和wdptr域,所以HELLO格式的size和address字段的值存在一些限制条件。RapidIO核不能把Size域中的非法值修正为实际RapidIO包中Size域的有效值,所以需要对HELLO格式包的Size域提供一个正确的值。由于AXI4-Stream协议中tdata信号为8个字节,也就是一个双字(Double Word),所以Size域的值需要分两种情况讨论:传输的数据量小于8字节和传输的数据量大于8字节。 (1)传输的数据量小于8字节(Sub-DWORD Accesses): PS : 这种情况我们后文会对example design的仿真进行具体介绍。 ??????????对于传输的数据量小于8字节的情况,address字段和size字段用来决定有效的字节位置(tkeep信号必须为0xff),但是仅仅能导致RapidIO包中rdsize/wrsize和wdptr为有效值的address和size值组合才是被允许的,下图是HELLO格式中address和size两个字段与有效字节位置的对应关系示意图(图中灰色部分为有效字节位置)《PG007》P.78
??????? 例如,(后文example design中的一个案例)对size=5,address=34’h1_1234_5672这两个组合来说,由于size=5,所以往address中写入的数据个数为6(size+1)个字节,而address的最低3位为2(3’b010),通过上图可知,有效字节的位置是第7、6、5、4、3、2六个字节。对于size和address[2:0]值的组合不在上图中的情况都是非法的,这是应该避免的,比如,size=5, address=34’h1_1234_5673这种组合就属于非法的组合。 (2)传输的数据量大于8字节(Large Accesses): ????????对于传输的数据量大于8字节,并且地址的起始字节偏移不为0的情况必须把数据分成多次进行传输,其中未对齐的小于8字节的段就可以通过上图中size和address的有效组合来确定有效字节的位置。另一种解决办法是,读操作的数据量大小可以被增加到下一个支持的大小,然后从对应的响应中剥离出必要的数据。 ?????????因此,对于数据量为1个双字(8个字节)或更大的情况,address的最低3位必须为0,RapidIO手册给读写事务定义了范围从1到256个字节的可支持的数据量。请求事务的数据量如果大于一个双字(8个字节),那么数据量应该通过四舍五入到最接近的支持的值。读写事务有效的HELLO格式的数据量为:7,15,31,63,95(仅支持读事务),127,159(仅支持读事务),191(仅支持读事务),223(仅支持读事务)和255。 ????????对于写事务的数据量介于以上这些支持的数据量中间的情况,在通道的tlast信号为1之前应该给RapidIO核提供必要的数据量,仅仅提供的数据才能被发送。同理,用户的设计提供的数据可能少于期望的数据量,那么实际的数据量应该被写入,传输应该假设完成。 ????????RapidIO协议不支持传输的数据量大于256字节的情况,并且逻辑层(Logical)也不能把大于256字节的数据量分割为小的数据量进行发送。如果不满足这个要求可能会导致致命的链路错误,在这种错误情况下,链路可能会不断重传数据量大于256字节的包。所以我们发送数据的时候要注意自己拆分数据。 3.3HELLO格式传输时序图????????HELLO格式数据的包头(Header)在用户接口的第一个有效时钟上,如果发送的事务携带数据负载,那么数据负载紧接着包头(Header)后面进行连续发送。包的Source ID和Destination ID放在tuser信号中并与包头(Header)一样,在第一个有效时钟下进行发送,发送完毕以后,tuser信号的数据被忽略。 ? ?????下图是携带有数据负载HELLO格式包在用户接口上传输的时序图,这个传输有4个双字(32个字节)的数据负载,加上包头,整个传输一共花费了5个时钟周期。用户只需要把想要发送的数据按照下图的时序图送入RapidIO核的AXI4-Stream接口,RapidIO核就能把它转化为标准的RapidiO串行物理层的包发出去从而完成一次事务的交互。
《PG007》P.79 ? ????????下图是一种更复杂的传输示意图。首先,有两个背靠背(back-to-back)单周期包(包不带数据负载,仅包含一个包头)。包的边界通过拉高tlast信号进行指示。在单周期包传输完毕以后,主机等待了一个时钟周期才开始发送下一个包。在发送第三个包的过程中,主机(Master)和从机(Slave)分别通过拉低tvalid和tready信号一个时钟周期来暂停数据的发送,由于第三个包的数据负载为2个双字,所以传输第三个包一共消耗了3个有效时钟,加上2个无效的时钟周期,一共消耗了5个时钟周期。
?3.4 AXI4-Stream协议????????RapidIO核事务收发接口采用的协议是AXI4-Stream协议。AXI4-Stream协议用ready/valid握手信号在主从设备之间传输信息。AXI4-Stream协议用tlast信号指示传输的最后一个数据从而确定包的边界,用tkeep字节使能信号指示数据中的有效字节,它还包括有效数据tdata信号以及用户数据tuser信号用来传输实际的包数据。 tkeep ?: 规定只能为8’hff; tvalid : 表示你的数据有效; tdata ?: 你要发送的数据(先发一个HELLO头,再发数据) tready : 核输出,表示准备好接收你的数据了 tlast ?: 表示最后一个数据 tuser : 一般发ID号,注意只在第一个时钟周期有效。 而对于我们逻辑设计而言,只需要设计这几个用户接口就OK,是不是超级简单!!! 四、SRIO Stream格式????????因为HELLO格式比较简单,一般使用HELLO格式!所以SRIO STREAM格式没用过,放张图,有兴趣的去PG007具体研究。 ?五、事务类型(重点)开门见山的说:事务类型是重点,因为要安装事务类型组包,但是呢,保存以供查阅就就好~《PG007》P.168 RapidIO协议定义了七种事务类型,每种事务类型执行不同的功能。RapidIO包格式中的FTYPE字段与TTYPE字段共同确定了事务的类型,与标准RapidIO协议不同的是,RapidIO核中定义了第9类事务(FTYPE=9)——DATA STREAMING事务,它是一类带有数据负载的写事务,而标准RapidIO协议中第9类事务是保留事务。详细的对应关系如下表所示:
? 后记知识还是挺多的,多了解就好了,最后你会发现,特么的,SRIO用起来居然就这么简单? ? 咱们下期见。 |
|
网络协议 最新文章 |
使用Easyswoole 搭建简单的Websoket服务 |
常见的数据通信方式有哪些? |
Openssl 1024bit RSA算法---公私钥获取和处 |
HTTPS协议的密钥交换流程 |
《小白WEB安全入门》03. 漏洞篇 |
HttpRunner4.x 安装与使用 |
2021-07-04 |
手写RPC学习笔记 |
K8S高可用版本部署 |
mySQL计算IP地址范围 |
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/26 9:42:23- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |