IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 网络协议 -> Dubbo源码解析-隐式参数传递 -> 正文阅读

[网络协议]Dubbo源码解析-隐式参数传递

前言:

在Dubbo中,为provider和consumer提供了一种被称为隐式参数传递的策略,可用于在两者之间传递参数。

本文先通过一个示例来展示下其使用过程,后续通过源码来分析下其传递过程。

1.示例分析

1.1 consumer示例

public class Application {
	// 服务提供者代码有所精简,本质上还是与之前的示例一样
	public static void main(String[] args) throws Exception {
        ReferenceConfig<DemoService> reference = new ReferenceConfig<>();
        reference.setApplication(new ApplicationConfig("dubbo-demo-api-consumer"));
        reference.setRegistry(new RegistryConfig("zookeeper://127.0.0.1:2181"));
        reference.setInterface(DemoService.class);
        
        // 设置参数
        RpcContext.getContext().setAttachment("address", "beijing");
        RpcContext.getContext().setAttachment("age", "12");
        
        reference.setScope("remote");
        DemoService service = reference.get();
        String message = service.sayHello("dubbo");
        System.out.println(message);
    }
}

相比之前的示例中,多了设置参数的代码,这个需要传递到provider。

1.2 provider示例

public class ProviderApplication {
    public static void main(String[] args) {
        // 服务实现(自定义DemoService接口)
        DemoService demoService = new DemoServiceImpl();

        // 当前应用配置
        ApplicationConfig application = new ApplicationConfig();
        application.setName("provider");

        // 连接注册中心配置
        RegistryConfig registry = new RegistryConfig();
        // 本地zookeeper作为配置中心
        registry.setAddress("zookeeper://localhost:2181");

        // 服务提供者协议配置
        ProtocolConfig protocol = new ProtocolConfig();
        // dubbo协议,并以20881端口暴露
        protocol.setName("dubbo");
        protocol.setPort(20881);

        // 服务提供者暴露服务配置
        ServiceConfig<DemoService> service = new ServiceConfig<DemoService>();
        service.setApplication(application);
        service.setRegistry(registry);
        service.setProtocol(protocol);
        service.setInterface(DemoService.class);
        service.setRef(demoService);
        service.setVersion("1.0.0");

        // 暴露及注册服务
        service.export();
    }
}

// 接口
public interface DemoService {
    String sayHello(String name);
}

public class DemoServiceImpl implements DemoService {
    private static final Logger logger = LoggerFactory.getLogger(org.apache.dubbo.demo.provider.DemoServiceImpl.class);

    @Override
    public String sayHello(String name) {
        // 在实现类中获取consumer传递过来的参数并打印出来
        String address = RpcContext.getContext().getAttachment("address");
        String age = RpcContext.getContext().getAttachment("age");

        System.out.println("address:" + address);
        System.out.println("age:" +age);

        return "Hi " + name;
    }
}

相比较之前的示例而言,多了在DemoService接口的实现类DemoServiceImpl中获取consumer传递过来的参数的代码。

1.3 测试结果

address:beijing
age=12

所以,从consumer端传递过来的参数,在provider端被接收到。

下面我们就从源码的角度来分析下整个参数传递的过程。

2.源码分析

2.1 RpcContext解析

在分析传递过程之前,先来看下RpcContext的作用

/**
 * Thread local context. (API, ThreadLocal, ThreadSafe)
 * <p>
 * Note: RpcContext is a temporary state holder. States in RpcContext changes every time when request is sent or received.
 * For example: A invokes B, then B invokes C. On service B, RpcContext saves invocation info from A to B before B
 * starts invoking C, and saves invocation info from B to C after B invokes C.
 *
 * @export
 * @see org.apache.dubbo.rpc.filter.ContextFilter
 */
public class RpcContext {
    
    // 参数存放位置
    protected final Map<String, Object> attachments = new HashMap<>();
    
    // 有关于RpcContext,其是线程安全的,每一个线程独享一个RpcContext
    private static final InternalThreadLocal<RpcContext> LOCAL = new InternalThreadLocal<RpcContext>() {
        @Override
        protected RpcContext initialValue() {
            return new RpcContext();
        }
    };
    
    // 获取RpcContext对象
    public static RpcContext getContext() {
        return LOCAL.get();
    }

    // 设置attachment参数
    public RpcContext setAttachment(String key, String value) {
        return setObjectAttachment(key, (Object) value);
    }

    public RpcContext setAttachment(String key, Object value) {
        return setObjectAttachment(key, value);
    }

    @Experimental("Experiment api for supporting Object transmission")
    public RpcContext setObjectAttachment(String key, Object value) {
        // 实际就是将参数设置到上面的attachments
        if (value == null) {
            attachments.remove(key);
        } else {
            attachments.put(key, value);
        }
        return this;
    }
}

通过对RpcContext的分析,我们知道:RpcContext是线程安全的,每一个线程独享一个RpcContext对象,我们在调用setAttachment()方法时将参数设置到该map中。

设置到RpcContext有什么用呢?我们继续分析consumer传递参数的过程

2.1 consumer传递参数

通过前面的分析,我们知道consumer方法的调用,会通过ClusterInvoker,默认是FailoverClusterInvoker,调用其invoke()方法。我们就从其invoke()方法分析起。

2.1.1 AbstractClusterInvoker.invoke() 获取consumer设置的参数

public abstract class AbstractClusterInvoker<T> implements Invoker<T> {
	public Result invoke(final Invocation invocation) throws RpcException {
        checkWhetherDestroyed();

        // 这里就从当前线程的ThreadLocal中获取RpcContext对象中存放的attachments参数信息
        Map<String, Object> contextAttachments = RpcContext.getContext().getObjectAttachments();
        if (contextAttachments != null && contextAttachments.size() != 0) {
            // 并将参数绑定到RpcInvocation.attachments属性中
            ((RpcInvocation) invocation).addObjectAttachments(contextAttachments);
        }

        List<Invoker<T>> invokers = list(invocation);
        LoadBalance loadbalance = initLoadBalance(invokers, invocation);
        RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation);
        // FailoverClusterInvoker实现
        return doInvoke(invocation, invokers, loadbalance);
    }
}

2.1.2 DubboInvoker.doInvoke() 发送数据

public class DubboInvoker<T> extends AbstractInvoker<T> {
	protected Result doInvoke(final Invocation invocation) throws Throwable {
        //  获取设置好的Invocation对象,里面有上一步骤获取的参数
        RpcInvocation inv = (RpcInvocation) invocation;
        final String methodName = RpcUtils.getMethodName(invocation);
        inv.setAttachment(PATH_KEY, getUrl().getPath());
        inv.setAttachment(VERSION_KEY, version);

        ExchangeClient currentClient;
        if (clients.length == 1) {
            currentClient = clients[0];
        } else {
            currentClient = clients[index.getAndIncrement() % clients.length];
        }
        try {
            boolean isOneway = RpcUtils.isOneway(getUrl(), invocation);
            int timeout = calculateTimeout(invocation, methodName);
            if (isOneway) {
                boolean isSent = getUrl().getMethodParameter(methodName, Constants.SENT_KEY, false);
                // 直接通过client传递出去
                currentClient.send(inv, isSent);
                return AsyncRpcResult.newDefaultAsyncResult(invocation);
            } else {
                ExecutorService executor = getCallbackExecutor(getUrl(), inv);
                CompletableFuture<AppResponse> appResponseFuture =
                        currentClient.request(inv, timeout, executor).thenApply(obj -> (AppResponse) obj);
                // save for 2.6.x compatibility, for example, TraceFilter in Zipkin uses com.alibaba.xxx.FutureAdapter
                FutureContext.getContext().setCompatibleFuture(appResponseFuture);
                AsyncRpcResult result = new AsyncRpcResult(appResponseFuture, inv);
                result.setExecutor(executor);
                return result;
            }
        } catch (TimeoutException e) {
            throw new RpcException(RpcException.TIMEOUT_EXCEPTION, "Invoke remote method timeout. method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
        } catch (RemotingException e) {
            throw new RpcException(RpcException.NETWORK_EXCEPTION, "Failed to invoke remote method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
        }
    }
}

传递对象就比较简单了,就是通过Netty channel将invocation对象(包含attachments)传递到服务端

2.2 provider接收参数

依旧我们之前对provider接收请求的过程分析,其会先经过一些Filter的处理,最后才交由接口实现类处理。

我们从 看起

2.2.1 ContextFilter 解析attachments

public class ContextFilter implements Filter, Filter.Listener {
	public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
        // 这个invocation就是从消费者端传递过来的那个invocation对象
        // 我们从这里获取其attachments
        Map<String, Object> attachments = invocation.getObjectAttachments();
        if (attachments != null) {
            Map<String, Object> newAttach = new HashMap<>(attachments.size());
            for (Map.Entry<String, Object> entry : attachments.entrySet()) {
                String key = entry.getKey();
                if (!UNLOADING_KEYS.contains(key)) {
                    newAttach.put(key, entry.getValue());
                }
            }
            attachments = newAttach;
        }

        RpcContext context = RpcContext.getContext();
        ...
        if (attachments != null) {
            // 将invocation中获取到的attachments重新放置到当前RpcContext中
            if (context.getObjectAttachments() != null) {
                context.getObjectAttachments().putAll(attachments);
            } else {
                context.setObjectAttachments(attachments);
            }
        }

        if (invocation instanceof RpcInvocation) {
            ((RpcInvocation) invocation).setInvoker(invoker);
        }

        try {
            context.clearAfterEachInvoke(false);
            return invoker.invoke(invocation);
        } finally {
            context.clearAfterEachInvoke(true);
            // IMPORTANT! For async scenario, we must remove context from current thread, so we always create a new RpcContext for the next invoke for the same thread.
            RpcContext.removeContext(true);
            RpcContext.removeServerContext();
        }
    }
}

通过ContextFilter?的分析我们知道:就是在当前Filter中,ContextFilter将从消费者端获取到的attachments,重新添加到provider端的RpcContext.attachments中。

这样,后续在我们的DemoService实现类中,就可以通过RpcContext获取到attachments了。

总结:

对隐式参数传递整个分析过程并不算困难,只要我们之前分析consumer、provider的过程足够坚实。

基本上Dubbo的这些扩展功能,都是通过这些Filter来实现的。

所以在分析其源码的时候,先分析主干信息,千万不要陷入无穷无尽的细节中了。

等主干分析清楚之后,再来对细节各个突破即可。

  网络协议 最新文章
使用Easyswoole 搭建简单的Websoket服务
常见的数据通信方式有哪些?
Openssl 1024bit RSA算法---公私钥获取和处
HTTPS协议的密钥交换流程
《小白WEB安全入门》03. 漏洞篇
HttpRunner4.x 安装与使用
2021-07-04
手写RPC学习笔记
K8S高可用版本部署
mySQL计算IP地址范围
上一篇文章      下一篇文章      查看所有文章
加:2021-12-13 13:13:40  更:2021-12-13 13:14:23 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/8 7:13:57-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码