1. 前言
请思考以下几个问题:
- 1).为什么需要设计网络缓冲区,内核中不是有读写缓冲区吗?
需要设计的网络缓冲区和内核中TCP缓冲区的关系如下图所示,通过socket进行进行绑定。具体来说网络缓冲区包括读(接收)缓冲区和写(发送)缓冲区。设计读缓冲区的目的是:当从TCP中读数据时,不能确定读到的是一个完整的数据包,如果是不完整的数据包,需要先放入缓冲区中进行缓存,直到数据包完整才进行业务处理。设计写缓冲区的目的是:向TCP写数据不能保证所有数据写成功,如果TCP写缓冲区已满,则会丢弃数据包,所以需要一个写缓冲区暂时存储需要写的数据。
假设有一个服务端程序,需要同时连接多个客户端,每一个socket就是一个连接对象,所以不同的socket都需要自己对应的读写缓冲区。如果将缓冲区设置为栈内存,很容易爆掉,故将将其设置为堆内存更加合理。此外,缓冲区容量上限一般是有限制的,一开始不需要分配过大,仅仅在缓冲区不足时进行扩展。
通过以上分析,不难得出读写缓冲区虽然是两个独立的缓冲区,但是其核心功能相同,可以复用其代码。 读写缓冲区至少提供两类接口:存储数据和读取数据 读写缓冲区要求:先进先出,保证存储的数据是有序的
第一种使用特殊字符界定数据包:例如\n ,\r\n ,第二种通过长度界定数据包,数据包中首先存储的是整个数据包的长度,再根据长度进行读取。
- 5).几种常见的缓冲区设计
①ringbuffer+读写指针 ringbuffer是一段连续的内存,当末端已经写入数据后,会从头部继续写数据,所以感觉上像一个环,实际是一个循环数组。ringbuffer的缺点也很明显:不能够扩展、对于首尾部分的数据需要增加一次IO调用。 ②可扩展的读写缓冲区+读写指针 下图设计了一种可扩展的读写缓冲区,在创建时会分配一块固定大小的内存,整个结构分为预留空间数据空间。预留空间用于存储必要的信息,真正存储数据的空间由连续内存组成。此种缓冲区设计相对于ringbuffer能够扩展,但是也有一定的缺点:由于需要最大化利用空间,会将数据移动至开头,移动操作会降低读写速度。
本文实现可扩展的读写缓冲区+读写指针
2. 数据结构
①Buffer类的设计与初始化
Buffer类的数据结构如下所示,m_s 是指向缓冲区的指针,m_max_size 是缓冲区的长度,初始设置为10,并根据扩展因子m_expand_par 进行倍增。扩展因子m_expand_par 设置为2,表示每次扩增长度翻倍,也就是说缓冲区的长度随扩展依次为10、20、40、80。
class Buffer{
public:
Buffer();
~Buffer();
int init();
private:
char* m_s;
size_t m_read_index;
size_t m_write_index;
size_t m_max_size;
size_t m_expand_par;
};
构造函数的初始化列表中初始化成员变量。实际初始化缓冲区在init函数中分配内存,大小为m_max_size 。不在构造函数中初始化缓冲区的原因是:如果构造函数中分配失败,无法处理,也可使用RAII手段进行处理
Buffer::Buffer()
:m_read_index(0),m_write_index(0),m_max_size(10), m_expand_par(2),m_s(nullptr)
{}
Buffer::~Buffer()
{
delete[] m_s;
}
int Buffer::init()
{
m_s = new char[m_max_size]();
if (m_s == nullptr) {
cout << "分配m_s失败\n";
return -1;
}
return 0;
}
②读写指针的位置变化
当缓冲区为空时,读写指针位置相同都为0。
在写入长度为6的数据后,读写指针位置如图 接着读取两个字节后,读写指针如图
③扩展缓冲区实现
扩展缓冲区实际分为两步,将有效数据前移至缓冲区头(最大化利用数据),再进行扩展。根据成员变量扩展因子m_expand_par 的值,将缓冲区按倍数扩大。
假设当前存储数据4个字节,读写指针如下图。需要新增9个字节 将数据前移至缓冲区头
扩展缓冲区为2倍 写入9个字节 实际需要实现的两个私有成员函数:调整数据位置至缓冲区头adjust_buffer() 和扩展expand_buffer() ,设置为私有属性则是因为不希望用户调用,仅仅在写入缓冲区前判断不够就进行扩展,用户不应该知道与主动调用。
class Buffer {
public:
...
private:
void adjust_buffer();
void expand_buffer(size_t need_size);
...
}
adjust_buffer() 实现如下,注释写的较为清楚,不再赘述
void Buffer::adjust_buffer()
{
if (m_read_index == 0)
return;
int used_size = m_write_index - m_read_index;
if (used_size == 0) {
m_write_index = 0;
m_read_index = 0;
}
else {
cout << "调整前read_index write_index" << m_read_index << " " << m_write_index << endl;
memcpy(m_s, &m_s[m_read_index], used_size);
m_write_index -= m_read_index;
cout << "调整了" << used_size << "个字节" << endl;
m_read_index = 0;
}
cout << "调整后read_index write_index" << m_read_index << " " << m_write_index << endl;
}
扩展缓冲区实现如下:
- 首先根据需要写入的字节数判断缓冲区长度多大才能够容下
- 申请新的存储区,并将数据拷贝到新存储区
- 释放旧缓冲区,将新存储区作为缓冲区
void Buffer::expand_buffer(size_t need_size)
{
size_t used_size = m_write_index - m_read_index;
size_t remain_size = m_max_size - used_size;
size_t expand_size = m_max_size;
while (remain_size < need_size) {
expand_size *= m_expand_par;
remain_size = expand_size - used_size;
}
char* s1 = new char[expand_size]();
memcpy(s1, m_s, m_max_size);
free(m_s);
m_s = s1;
m_max_size = expand_size;
}
3. 外部接口设计与实现
以读缓冲区为例需要提供的接口有:向缓冲区写入数据write_to_buffer() ,向缓冲区读取数据read_from_buffer() ,得到能够读取的最大字节数readable_bytes() 。
class Buffer {
public:
void write_to_buffer(char* src);
size_t readable_bytes();
size_t read_from_buffer(char *dst,int bytes);
size_t pop_bytes(size_t bytes);
}
① 写入缓冲区write_to_buffer()
write_to_buffer() 实现的思路如流程图所示:
根据流程图实现起来逻辑非常清晰,src表示原始数据
void Buffer::write_to_buffer(char* src)
{
size_t used_size = m_write_index - m_read_index;
size_t remain_size = m_max_size - used_size;
size_t cur_size = m_max_size - m_write_index;
size_t size = init_random_write(&src);
if (size > remain_size) {
adjust_buffer();
expand_buffer(size);
}
else if (size > cur_size) {
adjust_buffer();
}
memcpy(&m_s[m_write_index], src, size);
m_write_index += size;
delete[] src;
}
流程图中还出现随机一段数据,这是用来调试的。随机初始化一段长度为0~ 40,字符a~ z的数据,并写缓存区
static int get_random_len() {
return rand() % 40;
}
static int get_random_ala() {
return rand() % 26;
}
size_t Buffer::init_random_write(char** src)
{
int size = get_random_len();
char ala = get_random_ala();
*src = new char[size];
cout << "准备写入的长度为" << size << " 值全是 " << (unsigned char)('a' + ala) << endl;
for (int i = 0; i < size; i++) {
(*src)[i] = 'a' + ala;
}
return size;
}
② 读取缓冲区read_from_buffer()
read_from_buffer(char*dst,int read_size) 传入需要拷贝到目的地址和需要读取的字节数,需要注意的是需要读取的字节数为-1 表示全部读取,函数返回实际读取的字节数。实现如流程图所示:
代码如下
size_t Buffer::read_from_buffer(char*dst,int read_size)
{
size_t read_max = m_write_index - m_read_index;
if (read_size == 0 || read_max == 0)
return 0;
if (read_size == -1) {
memcpy(dst, &m_s[m_read_index], read_max);
m_read_index += read_max;
cout << "读取了" << read_max << "个字节" << endl;
}
else if (read_size > 0) {
if ((size_t)read_size > read_max)
read_size = read_max;
memcpy(dst, &m_s[m_read_index], read_size);
m_read_index += read_size;
cout << "读取了" << read_size << "个字节" << endl;
}
return read_size;
}
③ 丢弃数据pop_bytes
size_t pop_bytes(size_t size) 传入需要丢弃的字节数,需要注意的是需要丢弃的字节数为-1 表示全部丢弃;-2表示随机丢弃0~ 40字节,函数返回实际丢弃的字节数。实现如流程图所示:
size_t Buffer::pop_bytes(size_t size)
{
size_t read_max = m_write_index - m_read_index;
if (size == -2)
size = get_random_len();
if (size == 0 || read_max == 0)
return 0;
if (size == -1) {
m_read_index += read_max;
cout << "丢弃了" << read_max << "个字节" << endl;
return read_max;
}
if (size > 0) {
if (size > read_max)
size = read_max;
m_read_index += size;
cout << "丢弃了" << size << "个字节" << endl;
}
return size;
}
④ 其他接口
peek_read() 和peek_write() 返回读写指针的位置
size_t peek_read();
size_t peek_write();
size_t Buffer::peek_write()
{
return m_write_index;
}
size_t Buffer::peek_read()
{
return m_read_index;
}
4. 完整代码与测试
① 完整代码
Buffer.h
#pragma once
class Buffer {
public:
Buffer();
~Buffer();
int init();
void write_to_buffer(char* src);
size_t pop_bytes(size_t bytes);
size_t read_from_buffer(char *dst,int bytes);
size_t readable_bytes();
size_t peek_read();
size_t peek_write();
private:
void adjust_buffer();
void expand_buffer(size_t need_size);
size_t init_random_write(char** src);
private:
char* m_s;
size_t m_read_index;
size_t m_write_index;
size_t m_max_size;
size_t m_expand_par;
};
Buffer.cpp :
#include "Buffer.h"
#include<iostream>
#include<time.h>
using namespace std;
int total_write = 0;
int total_read = 0;
static int get_random_len() {
return rand() % 40;
}
static int get_random_ala() {
return rand() % 26;
}
Buffer::Buffer()
:m_read_index(0),m_write_index(0),m_max_size(10), m_expand_par(2),m_s(nullptr)
{}
Buffer::~Buffer()
{
delete[] m_s;
}
int Buffer::init()
{
m_s = new char[m_max_size]();
if (m_s == nullptr) {
cout << "分配m_s失败\n";
return -1;
}
return 0;
}
size_t Buffer::read_from_buffer(char*dst,int read_size)
{
size_t read_max = m_write_index - m_read_index;
if (read_size == 0 || read_max == 0)
return 0;
if (read_size == -1) {
memcpy(dst, &m_s[m_read_index], read_max);
m_read_index += read_max;
printf("读取完成:\t读取%d个字节\n", read_max);
total_read += read_max;
}
else if (read_size > 0) {
if ((size_t)read_size > read_max)
read_size = read_max;
memcpy(dst, &m_s[m_read_index], read_size);
m_read_index += read_size;
printf("读取完成:\t读取%d个字节\n", read_size);
total_read += read_size;
}
return read_size;
}
size_t Buffer::readable_bytes()
{
return m_write_index - m_read_index;
}
size_t Buffer::peek_write()
{
return m_write_index;
}
size_t Buffer::peek_read()
{
return m_read_index;
}
void Buffer::write_to_buffer(char* src)
{
size_t used_size = m_write_index - m_read_index;
size_t remain_size = m_max_size - used_size;
size_t cur_size = m_max_size - m_write_index;
size_t size = init_random_write(&src);
if (size > remain_size) {
adjust_buffer();
expand_buffer(size);
}
else if (size > cur_size) {
adjust_buffer();
}
memcpy(&m_s[m_write_index], src, size);
m_write_index += size;
delete[] src;
used_size = m_write_index - m_read_index;
remain_size = m_max_size - used_size;
cur_size = m_max_size - m_write_index;
printf("写入完成:\t总存储%d,剩余空间%d,剩余当前空间%d\n", used_size, remain_size, cur_size);
}
size_t Buffer::pop_bytes(size_t size)
{
size_t read_max = m_write_index - m_read_index;
if (size == -2)
size = get_random_len();
if (size == 0 || read_max == 0)
return 0;
if (size == -1) {
m_read_index += read_max;
cout << "丢弃了" << read_max << "个字节" << endl;
total_read += read_max;
return read_max;
}
if (size > 0) {
if (size > read_max)
size = read_max;
m_read_index += size;
cout << "丢弃了" << size << "个字节" << endl;
total_read += size;
}
return size;
}
size_t Buffer::init_random_write(char** src)
{
int size = get_random_len();
total_write += size;
*src = new char[size];
char ala = get_random_ala();
cout << "随机写入:\t长度为" << size << " 值全是 " << (unsigned char)('a' + ala) << endl;
for (int i = 0; i < size; i++) {
(*src)[i] = 'a' + ala;
}
return size;
}
void Buffer::adjust_buffer()
{
if (m_read_index == 0)
return;
int used_size = m_write_index - m_read_index;
if (used_size == 0) {
m_write_index = 0;
m_read_index = 0;
}
else {
cout << "调整前read_index write_index" << m_read_index << " " << m_write_index << endl;
memcpy(m_s, &m_s[m_read_index], used_size);
m_write_index -= m_read_index;
cout << "调整了" << used_size << "个字节" << endl;
m_read_index = 0;
}
cout << "调整后read_index write_index" << m_read_index << " " << m_write_index << endl;
}
void Buffer::expand_buffer(size_t need_size)
{
size_t used_size = m_write_index - m_read_index;
size_t remain_size = m_max_size - used_size;
size_t expand_size = m_max_size;
while (remain_size < need_size) {
expand_size *= m_expand_par;
remain_size = expand_size - used_size;
cout << "扩展长度中... 总剩余 总长度 " << remain_size << " " << expand_size << endl;
}
char* s1 = new char[expand_size]();
memcpy(s1, m_s, m_max_size);
free(m_s);
m_s = s1;
m_max_size = expand_size;
cout << "扩展结束,总长度为" << m_max_size << endl;
}
② 测试
int main() {
srand((unsigned)time(NULL));
Buffer* pbuffer = new Buffer();
if (pbuffer->init() != 0)
return 0;
{
char* s = nullptr;
char* read = new char[1000];
size_t read_size = 0;
pbuffer->write_to_buffer(s);
read_size = pbuffer-> read_from_buffer(read, -1);
pbuffer->write_to_buffer(s);
pbuffer->pop_bytes(-2);
read_size = read_size = pbuffer-> read_from_buffer(read, 0);
pbuffer->write_to_buffer(s);
cout << "总写入\t" << total_write << endl;;
cout << "总读取\t" << total_read << endl;
cout << "目前写入" << total_write - total_read << endl;
cout << "可读取\t" << pbuffer->readable_bytes()<< endl;
printf(" write %d read %d \n", pbuffer->peek_write(),pbuffer->peek_read());
if (total_write - total_read != pbuffer->readable_bytes()) {
cout << "error!!!" << endl;
}
else
cout << "test is ok\n\n\n";
}
delete s;
delete[] read;
delete pbuffer;
return 0;
}
随机1000000次测试
int main() {
srand((unsigned)time(NULL));
Buffer* pbuffer = new Buffer();
if (pbuffer->init() != 0)
return 0;
char* s = nullptr;
char* read = new char[1000];
size_t read_size = 0;
unsigned long long time = 0;
while (1) {
pbuffer->write_to_buffer(s);
read_size = pbuffer-> read_from_buffer(read, -1);
pbuffer->write_to_buffer(s);
pbuffer->write_to_buffer(s);
pbuffer->pop_bytes(-2);
read_size = read_size = pbuffer-> read_from_buffer(read, 0);
pbuffer->write_to_buffer(s);
pbuffer->pop_bytes(-2);
pbuffer->write_to_buffer(s);
read_size = pbuffer-> read_from_buffer(read, -1);
pbuffer->write_to_buffer(s);
pbuffer->write_to_buffer(s);
read_size = pbuffer-> read_from_buffer(read, 22);
pbuffer->write_to_buffer(s);
pbuffer->write_to_buffer(s);
read_size = pbuffer-> read_from_buffer(read, -1);
pbuffer->pop_bytes(-2);
pbuffer->pop_bytes(-2);
pbuffer->write_to_buffer(s);
pbuffer->write_to_buffer(s);
read_size = pbuffer-> read_from_buffer(read, 2);
pbuffer->write_to_buffer(s);
read_size = pbuffer-> read_from_buffer(read, 17);
pbuffer->write_to_buffer(s);
pbuffer->pop_bytes(-2);
pbuffer->write_to_buffer(s);
pbuffer->write_to_buffer(s);
pbuffer->read_from_buffer(read, 18);
cout << "总写入\t" << total_write << endl;;
cout << "总读取\t" << total_read << endl;
cout << "目前写入" << total_write - total_read << endl;
cout << "可读取\t" << pbuffer->readable_bytes()<< endl;
printf(" write %d read %d \n", pbuffer->peek_write(),pbuffer->peek_read());
if (total_write - total_read != pbuffer->readable_bytes()) {
cout << "error!!!" << endl;
break;
}
if (time == 1000000)
{
cout << "1000000 ok!!!" << endl;
break;
}
cout << time++ << " is ok\n\n\n";
}
delete s;
delete[] read;
delete pbuffer;
return 0;
}
|