Advanced modern algebra——Group 1
lemma 1
(Euclid’s Lemma) If
a
∣
b
c
a|bc
a∣bc and
(
a
,
b
)
=
1
(a,b)=1
(a,b)=1, then
a
∣
c
a|c
a∣c
Proof: Since
(
a
,
b
)
=
1
(a,b)=1
(a,b)=1, there exists
s
,
t
∈
N
s,t\in\mathbb N
s,t∈N such that
a
s
+
b
t
=
1
as+bt=1
as+bt=1. Hence,
c
=
c
?
1
=
c
(
a
s
+
b
t
)
=
a
(
c
s
)
+
t
(
b
c
)
c=c\cdot 1=c(as+bt)=a(cs)+t(bc)
c=c?1=c(as+bt)=a(cs)+t(bc). Since
a
∣
a
(
c
s
)
,
a
∣
(
b
c
)
a|a(cs),a|(bc)
a∣a(cs),a∣(bc),
a
∣
c
a|c
a∣c.
lemma 2
If
(
a
,
b
)
=
1
(a,b)=1
(a,b)=1, then the equation
a
x
≡
c
?
m
o
d
?
b
ax\equiv c ~\rm mod ~b
ax≡c?mod?b is solvable.
Proof: Since
(
a
,
b
)
=
1
(a,b)=1
(a,b)=1,
?
s
,
t
∈
N
\exist s,t\in \mathbb N
?s,t∈N, s.t.
a
s
+
b
x
=
1
as+bx=1
as+bx=1. Hence,
a
s
c
+
b
x
c
=
c
,
asc+bxc=c,
asc+bxc=c,
b
∣
(
a
(
s
c
)
?
c
)
b|(a(sc)-c)
b∣(a(sc)?c), that is
s
c
sc
sc is a solution. In fact, all solutions are
A
:
=
{
s
c
+
b
k
∣
k
∈
Z
}
A:=\{sc+bk|k\in\mathbb Z\}
A:={sc+bk∣k∈Z}. Set
B
B
B are the set of all solutions of the equation. It’s clear that
A
?
B
A\subset B
A?B. Next we will show
B
?
A
B\subset A
B?A. If
x
0
x_0
x0? is a solution, then we get
a
x
0
≡
c
?
m
o
d
?
b
ax_0\equiv c~\rm mod~b
ax0?≡c?mod?b,
b
∣
(
a
x
0
?
c
)
b|(ax_0-c)
b∣(ax0??c), hence
b
∣
(
a
x
0
?
c
)
+
(
a
s
?
c
)
?
b
∣
a
(
x
0
?
s
)
b|(ax_0-c)+(as-c)\Rightarrow b|a(x_0-s)
b∣(ax0??c)+(as?c)?b∣a(x0??s). Since
(
b
,
a
)
=
1
(b,a)=1
(b,a)=1,
b
∣
(
x
0
?
s
)
b|(x_0-s)
b∣(x0??s), by Euclid’s Lemma. There exists some
k
0
k_0
k0? such that
s
+
b
k
0
=
x
0
s+bk_0=x_0
s+bk0?=x0?, hence
B
?
A
B\subset A
B?A,
B
=
A
B=A
B=A.
Chinese Reminder’s Theorem
If
(
m
,
m
′
)
=
1
(m,m')=1
(m,m′)=1, then
x
≡
a
?
m
o
d
?
m
x\equiv a ~\rm mod~m
x≡a?mod?m and
x
≡
b
?
m
o
d
?
m
′
x\equiv b ~\rm mod~m'
x≡b?mod?m′ have solutions.
Proof: By lemma 2, the equation
x
≡
a
?
m
o
d
?
m
x\equiv a~\rm mod~m
x≡a?mod?m has solution
k
m
+
a
,
?
k
∈
Z
km+a,~k\in\mathbb Z
km+a,?k∈Z. Insititude
k
m
+
a
km+a
km+a into
x
≡
b
?
m
o
d
?
m
′
x\equiv b~\rm mod~m'
x≡b?mod?m′, we get
k
m
+
a
≡
b
?
m
o
d
?
m
′
km+a\equiv b~\rm mod~m'
km+a≡b?mod?m′,
m
k
≡
b
?
a
?
m
o
d
?
m
′
mk\equiv b-a~\rm mod~m'
mk≡b?a?mod?m′ for some
k
k
k. Since
(
m
,
m
′
)
=
1
(m,m')=1
(m,m′)=1,
?
k
0
∈
Z
\exists k_0\in\mathbb Z
?k0?∈Z, s.t.
m
k
0
≡
b
?
a
?
m
o
d
?
m
′
mk_0\equiv b-a~\rm mod~m'
mk0?≡b?a?mod?m′. So
x
0
=
m
k
0
+
a
x_0=mk_0+a
x0?=mk0?+a is a solution of equations. Assume that
y
y
y is also a solution of equation, then
{
y
≡
a
?
m
o
d
?
m
y
≡
b
?
m
o
d
?
m
′
\begin{cases}y\equiv a~\rm mod ~m\\y\equiv b~\rm mod ~m'\end{cases}
{y≡a?mod?my≡b?mod?m′?, hence
{
y
?
x
0
≡
0
?
m
o
d
?
m
y
?
x
0
≡
0
?
m
o
d
?
m
′
\begin{cases}y-x_0\equiv 0~\rm mod ~m\\y-x_0\equiv 0~\rm mod ~m'\end{cases}
{y?x0?≡0?mod?my?x0?≡0?mod?m′? Since
m
∣
(
y
?
x
0
)
,
?
m
′
∣
(
y
?
x
0
)
,
?
(
m
,
m
′
)
=
1
m|(y-x_0),~m'|(y-x_0),~(m,m')=1
m∣(y?x0?),?m′∣(y?x0?),?(m,m′)=1, we have
m
m
′
∣
(
y
?
x
0
)
(
?
)
mm'|(y-x_0)(*)
mm′∣(y?x0?)(?). So
?
l
∈
Z
\exists l\in\mathbb Z
?l∈Z,
y
?
x
0
=
l
m
m
′
,
?
y
=
x
0
+
l
m
m
′
y-x_0=lmm',~y=x_0+lmm'
y?x0?=lmm′,?y=x0?+lmm′. Set
X
:
=
{
s
o
l
u
t
i
o
n
s
?
o
f
?
e
q
u
a
t
i
o
n
s
}
X:=\{\rm solutions~of~equations\}
X:={solutions?of?equations},
Y
:
=
{
x
0
+
m
m
′
l
∣
l
∈
Z
}
Y:=\{x_0+mm'l|l\in\mathbb Z\}
Y:={x0?+mm′l∣l∈Z}. Now we have got
X
?
Y
X\subset Y
X?Y, next we show
Y
?
X
Y\subset X
Y?X.
?
x
0
+
m
m
′
l
\forall x_0+mm'l
?x0?+mm′l,
x
0
+
m
m
′
l
≡
x
0
?
m
o
d
?
m
x_0+mm'l\equiv x_0~\rm mod~m
x0?+mm′l≡x0??mod?m,
x
0
+
m
m
′
l
≡
x
0
?
m
o
d
?
m
′
x_0+mm'l\equiv x_0~\rm mod~m'
x0?+mm′l≡x0??mod?m′. Hence,
x
0
+
m
m
′
l
x_0+mm'l
x0?+mm′l is also a solution for any
l
∈
Z
l\in\mathbb Z
l∈Z,
Y
?
X
Y\subset X
Y?X, furthermore
X
=
Y
X=Y
X=Y. Hence the solution of equations is
{
x
0
+
m
m
′
l
∣
l
∈
Z
}
\{x_0+mm'l|l\in\mathbb Z\}
{x0?+mm′l∣l∈Z}.
proof of
(
?
)
(*)
(?): For
m
∣
(
y
?
x
0
)
m|(y-x_0)
m∣(y?x0?),
?
u
∈
Z
\exists u\in\mathbb Z
?u∈Z, s.t.
y
?
x
0
=
m
u
y-x_0=mu
y?x0?=mu. Since
m
′
∣
(
y
?
x
0
)
m'|(y-x_0)
m′∣(y?x0?),
m
′
∣
m
u
m'|mu
m′∣mu. Hence,
m
′
∣
u
m'|u
m′∣u, by Euclid’s lemma. Hence,
m
m
′
∣
m
u
=
y
?
x
0
mm'|mu=y-x_0
mm′∣mu=y?x0?.
An application of Chinese Remainder’s Theorem
Chinese Remainder’s Theorem is the key of the proof of the following statement: If
(
m
,
n
)
=
1
(m,n)=1
(m,n)=1, then
Z
m
n
?
Z
m
×
Z
n
\mathbb Z_{mn}\cong \mathbb Z_m\times\mathbb Z_n
Zmn??Zm?×Zn?. The detail will be ignored. Construct a map
?
:
Z
→
Z
m
×
Z
n
,
a
?
(
[
a
]
m
,
[
a
]
n
)
\phi: \mathbb Z\to \mathbb Z_m\times\mathbb Z_n, a\mapsto([a]_m,[a]_n)
?:Z→Zm?×Zn?,a?([a]m?,[a]n?). In fact,
?
\phi
? is a bijection. Chinese Remainder’s theorem assures its surjection.
?
a
,
b
∈
Z
\forall a,b\in\mathbb Z
?a,b∈Z, we want to find a
x
x
x such that
{
x
≡
a
?
m
o
d
?
m
x
≡
b
?
m
o
d
?
n
\begin{cases} x\equiv a~\rm mod ~m\\ x\equiv b~\rm mod ~n \end{cases}
{x≡a?mod?mx≡b?mod?n? Since
(
m
,
n
)
=
1
(m,n)=1
(m,n)=1, by Chinese Remainder’s theorem, the equations have solutions, such as
x
0
x_0
x0?,
[
x
0
]
m
n
?
(
[
x
0
]
m
,
[
x
0
]
n
)
=
(
[
a
]
m
,
[
b
]
n
)
[x_0]_{mn}\mapsto([x_0]_m,[x_0]_n)=([a]_m,[b]_n)
[x0?]mn??([x0?]m?,[x0?]n?)=([a]m?,[b]n?).
|