IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 网络协议 -> Timer底层原理 -> 正文阅读

[网络协议]Timer底层原理

Timer底层原理

今天,扒拉了一下ribbon负载均很策略,其中有一个策略是RetryRule,顾名思义就是客户端rpc调用失败时,它会不断地重新请求服务方进行尝试获取数据。
思想:在指定时间内不断的重新请求,直到超时。

上代码:

public Server choose(ILoadBalancer lb, Object key) {
		long requestTime = System.currentTimeMillis();
		// maxRetryMillis:默认500mm
		long deadline = requestTime + maxRetryMillis;
		Server answer = null;
		answer = subRule.choose(key);
		if (((answer == null) || (!answer.isAlive()))
				&& (System.currentTimeMillis() < deadline)) {
			// 定时器, 默认500mm后执行,把本线程设置成终端状态
			InterruptTask task = new InterruptTask(deadline
					- System.currentTimeMillis());
			// 不断尝试,直到任务超时,定时任务将线程中断
			while (!Thread.interrupted()) {
				answer = subRule.choose(key);
				// rpc调用失败
				if (((answer == null) || (!answer.isAlive()))
						&& (System.currentTimeMillis() < deadline)) {
					/* pause and retry hoping it's transient */
					// 放弃一次cpu资源
					Thread.yield();
				} else {
				   // rpc调用成功
					break;
				}
			}
			// 取消任务,将timertask状态标记为CALLED,由timer执行mainLoop时移除任务队列
			task.cancel();
		}

		if ((answer == null) || (!answer.isAlive())) {
			return null;
		} else {
			return answer;
		}
	}
public class Timer {
    /**
     * The timer task queue.  This data structure is shared with the timer
     * thread.  The timer produces tasks, via its various schedule calls,
     * and the timer thread consumes, executing timer tasks as appropriate,
     * and removing them from the queue when they're obsolete.
     */
     // 定时器自带的任务队列,使用的数据结构是。
    private final TaskQueue queue = new TaskQueue();

    /**
     * The timer thread.
     */
    private final TimerThread thread = new TimerThread(queue);

    /**
     * This object causes the timer's task execution thread to exit
     * gracefully when there are no live references to the Timer object and no
     * tasks in the timer queue.  It is used in preference to a finalizer on
     * Timer as such a finalizer would be susceptible to a subclass's
     * finalizer forgetting to call it.
     */
    private final Object threadReaper = new Object() {
        protected void finalize() throws Throwable {
            synchronized(queue) {
                thread.newTasksMayBeScheduled = false;
                queue.notify(); // In case queue is empty.
            }
        }
    };

    /**
     * This ID is used to generate thread names.
     */
    private final static AtomicInteger nextSerialNumber = new AtomicInteger(0);
    private static int serialNumber() {
        return nextSerialNumber.getAndIncrement();
    }

    /**
     * Creates a new timer.  The associated thread does <i>not</i>
     * {@linkplain Thread#setDaemon run as a daemon}.
     */
    public Timer() {
        this("Timer-" + serialNumber());
    }

    /**
     * Creates a new timer whose associated thread may be specified to
     * {@linkplain Thread#setDaemon run as a daemon}.
     * A daemon thread is called for if the timer will be used to
     * schedule repeating "maintenance activities", which must be
     * performed as long as the application is running, but should not
     * prolong the lifetime of the application.
     *
     * @param isDaemon true if the associated thread should run as a daemon.
     */
    public Timer(boolean isDaemon) {
        this("Timer-" + serialNumber(), isDaemon);
    }

    /**
     * Creates a new timer whose associated thread has the specified name.
     * The associated thread does <i>not</i>
     * {@linkplain Thread#setDaemon run as a daemon}.
     *
     * @param name the name of the associated thread
     * @throws NullPointerException if {@code name} is null
     * @since 1.5
     */
    public Timer(String name) {
        thread.setName(name);
        thread.start();
    }

    /**
     * Creates a new timer whose associated thread has the specified name,
     * and may be specified to
     * {@linkplain Thread#setDaemon run as a daemon}.
     *
     * @param name the name of the associated thread
     * @param isDaemon true if the associated thread should run as a daemon
     * @throws NullPointerException if {@code name} is null
     * @since 1.5
     */
    public Timer(String name, boolean isDaemon) {
        thread.setName(name);
        thread.setDaemon(isDaemon);
        thread.start();
    }

    /**
     * Schedules the specified task for execution after the specified delay.
     *
     * @param task  task to be scheduled.
     * @param delay delay in milliseconds before task is to be executed.
     * @throws IllegalArgumentException if <tt>delay</tt> is negative, or
     *         <tt>delay + System.currentTimeMillis()</tt> is negative.
     * @throws IllegalStateException if task was already scheduled or
     *         cancelled, timer was cancelled, or timer thread terminated.
     * @throws NullPointerException if {@code task} is null
     */
    public void schedule(TimerTask task, long delay) {
        if (delay < 0)
            throw new IllegalArgumentException("Negative delay.");
        sched(task, System.currentTimeMillis()+delay, 0);
    }

    /**
     * Schedules the specified task for execution at the specified time.  If
     * the time is in the past, the task is scheduled for immediate execution.
     *
     * @param task task to be scheduled.
     * @param time time at which task is to be executed.
     * @throws IllegalArgumentException if <tt>time.getTime()</tt> is negative.
     * @throws IllegalStateException if task was already scheduled or
     *         cancelled, timer was cancelled, or timer thread terminated.
     * @throws NullPointerException if {@code task} or {@code time} is null
     */
    public void schedule(TimerTask task, Date time) {
        sched(task, time.getTime(), 0);
    }

    /**
     * Schedules the specified task for repeated <i>fixed-delay execution</i>,
     * beginning after the specified delay.  Subsequent executions take place
     * at approximately regular intervals separated by the specified period.
     *
     * <p>In fixed-delay execution, each execution is scheduled relative to
     * the actual execution time of the previous execution.  If an execution
     * is delayed for any reason (such as garbage collection or other
     * background activity), subsequent executions will be delayed as well.
     * In the long run, the frequency of execution will generally be slightly
     * lower than the reciprocal of the specified period (assuming the system
     * clock underlying <tt>Object.wait(long)</tt> is accurate).
     *
     * <p>Fixed-delay execution is appropriate for recurring activities
     * that require "smoothness."  In other words, it is appropriate for
     * activities where it is more important to keep the frequency accurate
     * in the short run than in the long run.  This includes most animation
     * tasks, such as blinking a cursor at regular intervals.  It also includes
     * tasks wherein regular activity is performed in response to human
     * input, such as automatically repeating a character as long as a key
     * is held down.
     *
     * @param task   task to be scheduled.
     * @param delay  delay in milliseconds before task is to be executed.
     * @param period time in milliseconds between successive task executions.
     * @throws IllegalArgumentException if {@code delay < 0}, or
     *         {@code delay + System.currentTimeMillis() < 0}, or
     *         {@code period <= 0}
     * @throws IllegalStateException if task was already scheduled or
     *         cancelled, timer was cancelled, or timer thread terminated.
     * @throws NullPointerException if {@code task} is null
     */
    public void schedule(TimerTask task, long delay, long period) {
        if (delay < 0)
            throw new IllegalArgumentException("Negative delay.");
        if (period <= 0)
            throw new IllegalArgumentException("Non-positive period.");
        sched(task, System.currentTimeMillis()+delay, -period);
    }

    /**
     * Schedules the specified task for repeated <i>fixed-delay execution</i>,
     * beginning at the specified time. Subsequent executions take place at
     * approximately regular intervals, separated by the specified period.
     *
     * <p>In fixed-delay execution, each execution is scheduled relative to
     * the actual execution time of the previous execution.  If an execution
     * is delayed for any reason (such as garbage collection or other
     * background activity), subsequent executions will be delayed as well.
     * In the long run, the frequency of execution will generally be slightly
     * lower than the reciprocal of the specified period (assuming the system
     * clock underlying <tt>Object.wait(long)</tt> is accurate).  As a
     * consequence of the above, if the scheduled first time is in the past,
     * it is scheduled for immediate execution.
     *
     * <p>Fixed-delay execution is appropriate for recurring activities
     * that require "smoothness."  In other words, it is appropriate for
     * activities where it is more important to keep the frequency accurate
     * in the short run than in the long run.  This includes most animation
     * tasks, such as blinking a cursor at regular intervals.  It also includes
     * tasks wherein regular activity is performed in response to human
     * input, such as automatically repeating a character as long as a key
     * is held down.
     *
     * @param task   task to be scheduled.
     * @param firstTime First time at which task is to be executed.
     * @param period time in milliseconds between successive task executions.
     * @throws IllegalArgumentException if {@code firstTime.getTime() < 0}, or
     *         {@code period <= 0}
     * @throws IllegalStateException if task was already scheduled or
     *         cancelled, timer was cancelled, or timer thread terminated.
     * @throws NullPointerException if {@code task} or {@code firstTime} is null
     */
    public void schedule(TimerTask task, Date firstTime, long period) {
        if (period <= 0)
            throw new IllegalArgumentException("Non-positive period.");
        sched(task, firstTime.getTime(), -period);
    }

    /**
     * Schedules the specified task for repeated <i>fixed-rate execution</i>,
     * beginning after the specified delay.  Subsequent executions take place
     * at approximately regular intervals, separated by the specified period.
     *
     * <p>In fixed-rate execution, each execution is scheduled relative to the
     * scheduled execution time of the initial execution.  If an execution is
     * delayed for any reason (such as garbage collection or other background
     * activity), two or more executions will occur in rapid succession to
     * "catch up."  In the long run, the frequency of execution will be
     * exactly the reciprocal of the specified period (assuming the system
     * clock underlying <tt>Object.wait(long)</tt> is accurate).
     *
     * <p>Fixed-rate execution is appropriate for recurring activities that
     * are sensitive to <i>absolute</i> time, such as ringing a chime every
     * hour on the hour, or running scheduled maintenance every day at a
     * particular time.  It is also appropriate for recurring activities
     * where the total time to perform a fixed number of executions is
     * important, such as a countdown timer that ticks once every second for
     * ten seconds.  Finally, fixed-rate execution is appropriate for
     * scheduling multiple repeating timer tasks that must remain synchronized
     * with respect to one another.
     *
     * @param task   task to be scheduled.
     * @param delay  delay in milliseconds before task is to be executed.
     * @param period time in milliseconds between successive task executions.
     * @throws IllegalArgumentException if {@code delay < 0}, or
     *         {@code delay + System.currentTimeMillis() < 0}, or
     *         {@code period <= 0}
     * @throws IllegalStateException if task was already scheduled or
     *         cancelled, timer was cancelled, or timer thread terminated.
     * @throws NullPointerException if {@code task} is null
     */
    public void scheduleAtFixedRate(TimerTask task, long delay, long period) {
        if (delay < 0)
            throw new IllegalArgumentException("Negative delay.");
        if (period <= 0)
            throw new IllegalArgumentException("Non-positive period.");
        sched(task, System.currentTimeMillis()+delay, period);
    }

    /**
     * Schedules the specified task for repeated <i>fixed-rate execution</i>,
     * beginning at the specified time. Subsequent executions take place at
     * approximately regular intervals, separated by the specified period.
     *
     * <p>In fixed-rate execution, each execution is scheduled relative to the
     * scheduled execution time of the initial execution.  If an execution is
     * delayed for any reason (such as garbage collection or other background
     * activity), two or more executions will occur in rapid succession to
     * "catch up."  In the long run, the frequency of execution will be
     * exactly the reciprocal of the specified period (assuming the system
     * clock underlying <tt>Object.wait(long)</tt> is accurate).  As a
     * consequence of the above, if the scheduled first time is in the past,
     * then any "missed" executions will be scheduled for immediate "catch up"
     * execution.
     *
     * <p>Fixed-rate execution is appropriate for recurring activities that
     * are sensitive to <i>absolute</i> time, such as ringing a chime every
     * hour on the hour, or running scheduled maintenance every day at a
     * particular time.  It is also appropriate for recurring activities
     * where the total time to perform a fixed number of executions is
     * important, such as a countdown timer that ticks once every second for
     * ten seconds.  Finally, fixed-rate execution is appropriate for
     * scheduling multiple repeating timer tasks that must remain synchronized
     * with respect to one another.
     *
     * @param task   task to be scheduled.
     * @param firstTime First time at which task is to be executed.
     * @param period time in milliseconds between successive task executions.
     * @throws IllegalArgumentException if {@code firstTime.getTime() < 0} or
     *         {@code period <= 0}
     * @throws IllegalStateException if task was already scheduled or
     *         cancelled, timer was cancelled, or timer thread terminated.
     * @throws NullPointerException if {@code task} or {@code firstTime} is null
     */
    public void scheduleAtFixedRate(TimerTask task, Date firstTime,
                                    long period) {
        if (period <= 0)
            throw new IllegalArgumentException("Non-positive period.");
        sched(task, firstTime.getTime(), period);
    }

    /**
     * Schedule the specified timer task for execution at the specified
     * time with the specified period, in milliseconds.  If period is
     * positive, the task is scheduled for repeated execution; if period is
     * zero, the task is scheduled for one-time execution. Time is specified
     * in Date.getTime() format.  This method checks timer state, task state,
     * and initial execution time, but not period.
     *
     * @throws IllegalArgumentException if <tt>time</tt> is negative.
     * @throws IllegalStateException if task was already scheduled or
     *         cancelled, timer was cancelled, or timer thread terminated.
     * @throws NullPointerException if {@code task} is null
     */
    private void sched(TimerTask task, long time, long period) {
        if (time < 0)
            throw new IllegalArgumentException("Illegal execution time.");

        // Constrain value of period sufficiently to prevent numeric
        // overflow while still being effectively infinitely large.
        if (Math.abs(period) > (Long.MAX_VALUE >> 1))
            period >>= 1;

        synchronized(queue) {
            if (!thread.newTasksMayBeScheduled)
                throw new IllegalStateException("Timer already cancelled.");

            synchronized(task.lock) {
                if (task.state != TimerTask.VIRGIN)
                    throw new IllegalStateException(
                        "Task already scheduled or cancelled");
                task.nextExecutionTime = time;
                task.period = period;
                task.state = TimerTask.SCHEDULED;
            }

            queue.add(task);
            if (queue.getMin() == task)
                // 插入之前,queue为空,timerthread会执行queue.wait()阻塞自己,这里要唤醒
                queue.notify();
        }
    }

    /**
     * Terminates this timer, discarding any currently scheduled tasks.
     * Does not interfere with a currently executing task (if it exists).
     * Once a timer has been terminated, its execution thread terminates
     * gracefully, and no more tasks may be scheduled on it.
     *
     * <p>Note that calling this method from within the run method of a
     * timer task that was invoked by this timer absolutely guarantees that
     * the ongoing task execution is the last task execution that will ever
     * be performed by this timer.
     *
     * <p>This method may be called repeatedly; the second and subsequent
     * calls have no effect.
     */
    public void cancel() {
        synchronized(queue) {
            thread.newTasksMayBeScheduled = false;
            queue.clear();
            queue.notify();  // In case queue was already empty.
        }
    }

    /**
     * Removes all cancelled tasks from this timer's task queue.  <i>Calling
     * this method has no effect on the behavior of the timer</i>, but
     * eliminates the references to the cancelled tasks from the queue.
     * If there are no external references to these tasks, they become
     * eligible for garbage collection.
     *
     * <p>Most programs will have no need to call this method.
     * It is designed for use by the rare application that cancels a large
     * number of tasks.  Calling this method trades time for space: the
     * runtime of the method may be proportional to n + c log n, where n
     * is the number of tasks in the queue and c is the number of cancelled
     * tasks.
     *
     * <p>Note that it is permissible to call this method from within a
     * a task scheduled on this timer.
     *
     * @return the number of tasks removed from the queue.
     * @since 1.5
     */
     public int purge() {
         int result = 0;

         synchronized(queue) {
             for (int i = queue.size(); i > 0; i--) {
                 if (queue.get(i).state == TimerTask.CANCELLED) {
                     queue.quickRemove(i);
                     result++;
                 }
             }

             if (result != 0)
                 queue.heapify();
         }

         return result;
     }
}

/**
 * This "helper class" implements the timer's task execution thread, which
 * waits for tasks on the timer queue, executions them when they fire,
 * reschedules repeating tasks, and removes cancelled tasks and spent
 * non-repeating tasks from the queue.
 */
class TimerThread extends Thread {
    /**
     * This flag is set to false by the reaper to inform us that there
     * are no more live references to our Timer object.  Once this flag
     * is true and there are no more tasks in our queue, there is no
     * work left for us to do, so we terminate gracefully.  Note that
     * this field is protected by queue's monitor!
     */
    boolean newTasksMayBeScheduled = true;

    /**
     * Our Timer's queue.  We store this reference in preference to
     * a reference to the Timer so the reference graph remains acyclic.
     * Otherwise, the Timer would never be garbage-collected and this
     * thread would never go away.
     */
    private TaskQueue queue;

    TimerThread(TaskQueue queue) {
        this.queue = queue;
    }

    public void run() {
        try {
            mainLoop();
        } finally {
            // Someone killed this Thread, behave as if Timer cancelled
            synchronized(queue) {
                newTasksMayBeScheduled = false;
                queue.clear();  // Eliminate obsolete references
            }
        }
    }

    /**
     * The main timer loop.  (See class comment.)
     */
    private void mainLoop() {
        while (true) {
            try {
                TimerTask task;
                boolean taskFired;
                synchronized(queue) {
                    // Wait for queue to become non-empty
                    while (queue.isEmpty() && newTasksMayBeScheduled)
                        queue.wait();
                    if (queue.isEmpty())
                        break; // Queue is empty and will forever remain; die

                    // Queue nonempty; look at first evt and do the right thing
                    long currentTime, executionTime;
                    task = queue.getMin();
                    synchronized(task.lock) {
                        // 任务被标记为CANCELLED将会不会被执行
                        if (task.state == TimerTask.CANCELLED) {
                            queue.removeMin();
                            continue;  // No action required, poll queue again
                        }
                        currentTime = System.currentTimeMillis();
                        executionTime = task.nextExecutionTime;
                        // 判断是否已经执行过
                        if (taskFired = (executionTime<=currentTime)) {
                            if (task.period == 0) { // Non-repeating, remove
                                queue.removeMin();
                                task.state = TimerTask.EXECUTED;
                            } else { // Repeating task, reschedule
                                queue.rescheduleMin(
                                  task.period<0 ? currentTime   - task.period
                                                : executionTime + task.period);
                            }
                        }
                    }
                    if (!taskFired) // Task hasn't yet fired; wait
                        queue.wait(executionTime - currentTime);
                }
                if (taskFired)  // Task fired; run it, holding no locks
                    task.run();
            } catch(InterruptedException e) {
            }
        }
    }
}

/**
 * This class represents a timer task queue: a priority queue of TimerTasks,
 * ordered on nextExecutionTime.  Each Timer object has one of these, which it
 * shares with its TimerThread.  Internally this class uses a heap, which
 * offers log(n) performance for the add, removeMin and rescheduleMin
 * operations, and constant time performance for the getMin operation.
 */
class TaskQueue {
    /**
     * Priority queue represented as a balanced binary heap: the two children
     * of queue[n] are queue[2*n] and queue[2*n+1].  The priority queue is
     * ordered on the nextExecutionTime field: The TimerTask with the lowest
     * nextExecutionTime is in queue[1] (assuming the queue is nonempty).  For
     * each node n in the heap, and each descendant of n, d,
     * n.nextExecutionTime <= d.nextExecutionTime.
     */
    private TimerTask[] queue = new TimerTask[128];

    /**
     * The number of tasks in the priority queue.  (The tasks are stored in
     * queue[1] up to queue[size]).
     */
    private int size = 0;

    /**
     * Returns the number of tasks currently on the queue.
     */
    int size() {
        return size;
    }

    /**
     * Adds a new task to the priority queue.
     */
    void add(TimerTask task) {
        // Grow backing store if necessary
        if (size + 1 == queue.length)
            queue = Arrays.copyOf(queue, 2*queue.length);

        queue[++size] = task;
        fixUp(size);
    }

    /**
     * Return the "head task" of the priority queue.  (The head task is an
     * task with the lowest nextExecutionTime.)
     */
    TimerTask getMin() {
        return queue[1];
    }

    /**
     * Return the ith task in the priority queue, where i ranges from 1 (the
     * head task, which is returned by getMin) to the number of tasks on the
     * queue, inclusive.
     */
    TimerTask get(int i) {
        return queue[i];
    }

    /**
     * Remove the head task from the priority queue.
     */
    void removeMin() {
        queue[1] = queue[size];
        queue[size--] = null;  // Drop extra reference to prevent memory leak
        fixDown(1);
    }

    /**
     * Removes the ith element from queue without regard for maintaining
     * the heap invariant.  Recall that queue is one-based, so
     * 1 <= i <= size.
     */
    void quickRemove(int i) {
        assert i <= size;

        queue[i] = queue[size];
        queue[size--] = null;  // Drop extra ref to prevent memory leak
    }

    /**
     * Sets the nextExecutionTime associated with the head task to the
     * specified value, and adjusts priority queue accordingly.
     */
    void rescheduleMin(long newTime) {
        queue[1].nextExecutionTime = newTime;
        fixDown(1);
    }

    /**
     * Returns true if the priority queue contains no elements.
     */
    boolean isEmpty() {
        return size==0;
    }

    /**
     * Removes all elements from the priority queue.
     */
    void clear() {
        // Null out task references to prevent memory leak
        for (int i=1; i<=size; i++)
            queue[i] = null;

        size = 0;
    }

    /**
     * Establishes the heap invariant (described above) assuming the heap
     * satisfies the invariant except possibly for the leaf-node indexed by k
     * (which may have a nextExecutionTime less than its parent's).
     *
     * This method functions by "promoting" queue[k] up the hierarchy
     * (by swapping it with its parent) repeatedly until queue[k]'s
     * nextExecutionTime is greater than or equal to that of its parent.
     */
    private void fixUp(int k) {
        while (k > 1) {
            int j = k >> 1;
            if (queue[j].nextExecutionTime <= queue[k].nextExecutionTime)
                break;
            TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
            k = j;
        }
    }

    /**
     * Establishes the heap invariant (described above) in the subtree
     * rooted at k, which is assumed to satisfy the heap invariant except
     * possibly for node k itself (which may have a nextExecutionTime greater
     * than its children's).
     *
     * This method functions by "demoting" queue[k] down the hierarchy
     * (by swapping it with its smaller child) repeatedly until queue[k]'s
     * nextExecutionTime is less than or equal to those of its children.
     */
    private void fixDown(int k) {
        int j;
        while ((j = k << 1) <= size && j > 0) {
            if (j < size &&
                queue[j].nextExecutionTime > queue[j+1].nextExecutionTime)
                j++; // j indexes smallest kid
            if (queue[k].nextExecutionTime <= queue[j].nextExecutionTime)
                break;
            TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
            k = j;
        }
    }

    /**
     * Establishes the heap invariant (described above) in the entire tree,
     * assuming nothing about the order of the elements prior to the call.
     */
    void heapify() {
        for (int i = size/2; i >= 1; i--)
            fixDown(i);
    }
}

  网络协议 最新文章
使用Easyswoole 搭建简单的Websoket服务
常见的数据通信方式有哪些?
Openssl 1024bit RSA算法---公私钥获取和处
HTTPS协议的密钥交换流程
《小白WEB安全入门》03. 漏洞篇
HttpRunner4.x 安装与使用
2021-07-04
手写RPC学习笔记
K8S高可用版本部署
mySQL计算IP地址范围
上一篇文章      下一篇文章      查看所有文章
加:2022-03-12 17:57:52  更:2022-03-12 17:59:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 6:32:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码