IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 网络协议 -> Java IO概念(阻塞与非阻塞、同步与异步、BIO、NIO、AIO剖析) -> 正文阅读

[网络协议]Java IO概念(阻塞与非阻塞、同步与异步、BIO、NIO、AIO剖析)

一、阻塞和非阻塞、同步和异步

1、阻塞(Block)和非阻塞(Non-Block)

阻塞和非阻塞是进程在访问数据的时候,数据是否准备就绪的一种处理方式,当数据没有准备的时候。

阻塞:往往需要等待缓冲区中的数据准备好过后才处理其他的事情,否则一直等待在那里。

非阻塞:当我们的进程访问我们的数据缓冲区的时候,如果数据没有准备好则直接返回,不会等待。如果数据已经准备好,也直接返回。

2、同步(Synchronization)和异步(Asynchronous)

同步和异步都是基于应用程序和操作系统处理 IO 事件所采用的方式。比如同步:是应用程序要直接参与 IO 读写的操作。异步:所有的 IO 读写交给操作系统去处理,应用程序只需要等待通知。

同步方式在处理 IO 事件的时候,必须阻塞在某个方法上面等待我们的 IO 事件完成(阻塞 IO 事件或者通过轮询 IO事件的方式),对于异步来说,所有的 IO 读写都交给了操作系统。这个时候,我们可以去做其他的事情,并不需要去完成真正的 IO 操作,当操作完成 IO 后,会给我们的应用程序一个通知。

同步 : 阻塞到 IO 事件,阻塞到 read 或则 write。这个时候我们就完全不能做自己的事情。让读写方法加入到线程里面,然后阻塞线程来实现,对线程的性能开销比较大。

二、BIO 与 NIO 对比

Java BIO(Block IO)和 NIO(Non-Block IO)之间的主要差别异:
在这里插入图片描述

在这里插入图片描述

1、面向流与面向缓冲

Java NIO 和 BIO 之间第一个最大的区别是,BIO 是面向流的,NIO 是面向缓冲区的。 Java BIO 面向流意味着每次从流中读一个或多个字节,直至读取所有字节,它们没有被缓存在任何地方。此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的数据,需要先将它缓存到一个缓冲区。 Java NIO 的缓冲导向方法略有不同。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所有你需要处理的数据。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。

2、阻塞与非阻塞

Java BIO 的各种流是阻塞的。这意味着,当一个线程调用 read() 或 write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。 Java NIO 的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞, 所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞 IO 的空闲时间用于在其它通道上执行 IO 操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。

3、选择器

Java NIO 的选择器(Selector)允许一个单独的线程来监视多个输入通道,你可以注册多个通道使用一个选择器,然后使用一个单独的线程来“选择”通道:这些通道里已经有可以处理的输入,或者选择已准备写入的通道。这种选择机制,使得一个单独的线程很容易来管理多个通道。

4、NIO 和BIO 如何影响应用程序的设计

无论选择 BIO 或 NIO 工具箱,可能会影响应用程序设计的以下几个方面:

  • 对 NIO 或 BIO 类的 API 调用。
  • 数据处理逻辑。
  • 用来处理数据的线程数。
  1. API 调用
    当然,使用 NIO 的 API 调用时看起来与使用 BIO 时有所不同,但这并不意外,因为并不是仅从一个 InputStream 逐字节读取,而是数据必须先读入缓冲区再处理。

  2. 数据处理

使用纯粹的 NIO 设计相较 BIO 设计,数据处理也受到影响。

在 BIO 设计中,我们从 InputStream 或 Reader 逐字节读取数据。假设你正在处理一基于行的文本数据流,例如: 有如下一段文本:

Name:Ckw
Age:18
Email: ckw@qq.com
Phone:13888888888

该文本行的流可以这样处理:

FileInputStream input = new FileInputStream("d://info.txt"); 
BufferedReader reader = new BufferedReader(new InputStreamReader(input)); 	
String nameLine = reader.readLine();
String ageLine = reader.readLine();
String emailLine = reader.readLine();
String phoneLine = reader.readLine();

处理状态由程序执行多久决定。换句话说,一旦 reader.readLine()方法返回,你就知道肯定文本行就已读完, readline()阻塞直到整行读完,这就是原因。你也知道此行包含名称;同样,第二个 readline()调用返回的时候,你知道这行包含年龄等。 正如你可以看到,该处理程序仅在有新数据读入时运行,并知道每步的数据是什么。一旦正在运行的线程已处理过读入的某些数据,该线程不会再回退数据(大多如此)。下图也说明了这条原则:

在这里插入图片描述
(Java BIO: 从一个阻塞的流中读数据) 而一个 NIO 的实现会有所不同,下面是一个简单的例子:

ByteBuffer buffer = ByteBuffer.allocate(48); 
int bytesRead = inChannel.read(buffer);

注意第二行,从通道读取字节到 ByteBuffer。当这个方法调用返回时,你不知道你所需的所有数据是否在缓冲区内。你所知道的是,该缓冲区包含一些字节,这使得处理有点困难。

注意第二行,从通道读取字节到 ByteBuffer。当这个方法调用返回时,你不知道你所需的所有数据是否在缓冲区内。你所知道的是,该缓冲区包含一些字节,这使得处理有点困难。

所以,你怎么知道是否该缓冲区包含足够的数据可以处理呢?你不知道。发现的方法只能查看缓冲区中的数据。其结果是,在你知道所有数据都在缓冲区里之前,你必须检查几次缓冲区的数据。这不仅效率低下,而且可以使程序设计方案杂乱不堪。例如:

ByteBuffer buffer = ByteBuffer.allocate(48); 
int bytesRead = inChannel.read(buffer); 
while(!bufferFull(bytesRead)) {
	bytesRead = inChannel.read(buffer);
}

bufferFull()方法必须跟踪有多少数据读入缓冲区,并返回真或假,这取决于缓冲区是否已满。换句话说,如果缓冲区准备好被处理,那么表示缓冲区满了。

如果缓冲区已满,它可以被处理。如果它不满,并且在你的实际案例中有意义,你或许能处理其中的部分数据。但是许多情况下并非如此。下图展示了“缓冲区数据循环就绪”:

在这里插入图片描述

  1. 设置处理线程数
    NIO 可只使用一个(或几个)单线程管理多个通道(网络连接或文件),但付出的代价是解析数据可能会比从一个阻塞流中读取数据更复杂。
    如果需要管理同时打开的成千上万个连接,这些连接每次只是发送少量的数据,例如聊天服务器,实现 NIO 的服务器可能是一个优势。同样,如果你需要维持许多打开的连接到其他计算机上,如 P2P 网络中,使用一个单独的线程来管理你所有出站连接,可能是一个优势。一个线程多个连接的设计方案如:

在这里插入图片描述

Java NIO: 单线程管理多个连接

如果你有少量的连接使用非常高的带宽,一次发送大量的数据,也许典型的 IO 服务器实现可能非常契合。下图说明了一个典型的 IO 服务器设计

在这里插入图片描述

Java BIO: 一个典型的 IO 服务器设计- 一个连接通过一个线程处理

三、Java AIO 详解

jdk1.7 (NIO2)才是实现真正的异步 AIO、把 IO 读写操作完全交给操作系统,学习了 linux epoll 模式

1、AIO(Asynchronous IO)基本原理

服务端:AsynchronousServerSocketChannel 客服端:AsynchronousSocketChannel
用户处理器:CompletionHandler 接口,这个接口实现应用程序向操作系统发起 IO 请求,当完成后处理具体逻辑,否则做自己该做的事情,

“真正”的异步IO需要操作系统更强的支持。在IO多路复用模型中,事件循环将文件句柄的状态事件通知给用户线程, 由用户线程自行读取数据、处理数据。而在异步IO模型中,当用户线程收到通知时,数据已经被内核读取完毕,并放在了用户线程指定的缓冲区内,内核在IO完成后通知用户线程直接使用即可。异步IO模型使用了Proactor设计模式实现了这一机制,如下图所示:
在这里插入图片描述

2、AIO 代码实现

服务端代码

/**
 * AIO服务端
 */
public class AIOServer {

    private final int port;

    public static void main(String args[]) {
        int port = 8000;
        new AIOServer(port);
    }

    public AIOServer(int port) {
        this.port = port;
        listen();
    }

    private void listen() {
        try {
            ExecutorService executorService = Executors.newCachedThreadPool();
            AsynchronousChannelGroup threadGroup = AsynchronousChannelGroup.withCachedThreadPool(executorService, 1);
            //工作线程,用来侦听回调的,事件响应的时候需要回调
            final AsynchronousServerSocketChannel server = AsynchronousServerSocketChannel.open(threadGroup);
            server.bind(new InetSocketAddress(port));
            System.out.println("服务已启动,监听端口" + port);

            //准备接受数据
            server.accept(null, new CompletionHandler<AsynchronousSocketChannel, Object>(){
                final ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
                //实现completed方法来回调
                //由操作系统来触发
                //回调有两个状态,成功
                public void completed(AsynchronousSocketChannel result, Object attachment){
                    System.out.println("IO操作成功,开始获取数据");
                    try {
                        buffer.clear();
                        result.read(buffer).get();
                        buffer.flip();
                        result.write(buffer);
                        buffer.flip();
                    } catch (Exception e) {
                        System.out.println(e.toString());
                    } finally {
                        try {
                            result.close();
                            server.accept(null, this);
                        } catch (Exception e) {
                            System.out.println(e.toString());
                        }
                    }

                    System.out.println("操作完成");
                }

                @Override
                //回调有两个状态,失败
                public void failed(Throwable exc, Object attachment) {
                    System.out.println("IO操作是失败: " + exc);
                }
            });

            try {
                Thread.sleep(Integer.MAX_VALUE);
            } catch (InterruptedException ex) {
                System.out.println(ex);
            }
        } catch (IOException e) {
            System.out.println(e);
        }
    }
}

客户端代码:

/**
 * AIO客户端
 */
public class AIOClient {
    private final AsynchronousSocketChannel client;

    public AIOClient() throws Exception{
        client = AsynchronousSocketChannel.open();
    }

    public void connect(String host,int port)throws Exception{
        client.connect(new InetSocketAddress(host,port),null,new CompletionHandler<Void,Void>() {
            @Override
            public void completed(Void result, Void attachment) {
                try {
                    client.write(ByteBuffer.wrap("这是一条测试数据".getBytes())).get();
                    System.out.println("已发送至服务器");
                } catch (Exception ex) {
                    ex.printStackTrace();
                }
            }

            @Override
            public void failed(Throwable exc, Void attachment) {
                exc.printStackTrace();
            }
        });
        final ByteBuffer bb = ByteBuffer.allocate(1024);
        client.read(bb, null, new CompletionHandler<Integer,Object>(){

                    @Override
                    public void completed(Integer result, Object attachment) {
                        System.out.println("IO操作完成" + result);
                        System.out.println("获取反馈结果" + new String(bb.array()));
                    }

                    @Override
                    public void failed(Throwable exc, Object attachment) {
                        exc.printStackTrace();
                    }
                }
        );

        try {
            Thread.sleep(Integer.MAX_VALUE);
        } catch (InterruptedException ex) {
            System.out.println(ex);
        }

四、各 IO 模型对比与总结

在这里插入图片描述

  网络协议 最新文章
使用Easyswoole 搭建简单的Websoket服务
常见的数据通信方式有哪些?
Openssl 1024bit RSA算法---公私钥获取和处
HTTPS协议的密钥交换流程
《小白WEB安全入门》03. 漏洞篇
HttpRunner4.x 安装与使用
2021-07-04
手写RPC学习笔记
K8S高可用版本部署
mySQL计算IP地址范围
上一篇文章      下一篇文章      查看所有文章
加:2022-04-22 19:15:05  更:2022-04-22 19:15:49 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 3:28:35-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码