IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 网络协议 -> R语言生存分析模型因果分析:非参数估计、IP加权风险模型、结构嵌套加速失效(AFT)模型分析流行病学随访研究数据 -> 正文阅读

[网络协议]R语言生存分析模型因果分析:非参数估计、IP加权风险模型、结构嵌套加速失效(AFT)模型分析流行病学随访研究数据

原文链接:http://tecdat.cn/?p=26632

原文出处:拓端数据部落公众号

理解世界,我们可以从相关性的角度去描述,统计,机器学习,很多问题都是从相关的角度去描述的。我们去构建一个模型,不管是统计机器学习模型,还是深度学习模型,本质上是构建一个复杂映射。从特征到标签的一个映射,这个映射是有用的,但不完全有用。

因果分析

我们在这里用一个隐喻,下雨,来描述causal 和relevance。我们可以构建一个关于预测明天是否下雨的模型,从搜集到的大量特征,以及历史的下雨结果最为标签,构建模型。不管准确率多少,我们用这样一个模型能够预测明天是否能够下雨。

但是,我们很多时候要的不仅仅是预测,而是需要改变现状,例如沙漠中,我们想要哪些因素改变了,能够导致下雨。这就涉及到因果推断, causal inference 。

因果生存分析

在报告随机实验的结果时,除了意向治疗效应外,研究人员通常选择呈现符合方案效应。然而,这些符合方案的影响通常是回顾性描述的,例如,比较在整个研究期间坚持其指定治疗策略的个体之间的结果。这种对符合方案效应的回顾性定义经常被混淆,并且无法进行因果解释,因为它遇到了治疗混杂因素。

我们的目标是概述使用逆概率加权对生存结果的因果推断。这里描述的基本概念也适用于其他类型的暴露策略,尽管这些可能需要额外的设计或分析考虑。

生存曲线的非参数估计


# 对数据进行一些预处理 
ifelse(nes$death==0, 120, 
                         (ns$yrh-83)*12+nhefs$moh) # yrt从83到92不等

summary(survtime)

survdiff(Surv(srtm, dah) ~ qmk, data=nes)

fit <- survfit(Surv(rvie, dth) ~ sk, data=ns)
ggsurvplot(fit

通过风险模型对生存曲线进行参数化估计

# 创建月数据

efsurv$ent <- ifelse(nhfs.rv$time==nhfs.urv$srvme-1 & 
                             nhf.srv$death==1, 1, 0)


# 拟合参数性风险模型
haads.el <- glm(event==0 ~ qs


#对每个人月的估计(1-风险)的分配 */
qk0$pnoevt0 <- predict(hardoel, mk0, type="response")

# 计算每个人月的生存率
qm0$uv0 <- cumprod(qm0$pnoet0)

# 一些数据管理来绘制估计的生存曲线
hadgrh$suvdff <- haardsgph$suv1-hardgrph$srv0

# 绘制
ggplot(hads.aph

通过IP加权风险模型估计生存曲线

# 估计ip权重的分母

nef$p.mk <- predict(enm, nes, type="response")

# 估计ip权重的分子
p.m <- glm(qk ~ 1, data=nefs, family=binomial() )
hfs$pnsm <- predict(p.m, nes, type="response")

# 估计权重的计算
nef$s.<- ifelse(hes$qsk==1, nefs$pqmk/nhes$d.qmk,
                     (1-nfs$p.smk)/(1-nef$pdqk))
summary(nhs$swa)

# 创建人月数据
nhfsw <- exnRos(nhfs, "srvtime", drop=F) 
nh.pw$ime <- sqee(rle(nefs.ipw$seqn)$lengths)-1
nhfipw$evnt <- ifele(nhf.iw$tie=nhefs.i$rv1 &) 
                            nhfs.w$eath==1, 1, 0)
nhefpw$tmesq <- nhfs.pw$me^2

# 拟合加权风险模型
imel <- glm(eve

# 创建生存曲线
ipw.k0 <- data.frame(cbind(seq(0, 119),0, (seq(0, 119))^2))



# 对每个人月的估计(1-危险)的分配 */
iwqk0$p.nvnt0 <- predict(ipwdl, pwm0, type="response")
iwsk1$povt1 <- predict(ip.el, ipmk1, type="response")

# 计算每个人月的生存率
ip.qs0$srv0 <- cumprod(ipwsk0$p.nevnt0)
ip.qm1$suv1 <- cumprod(iwqsk1$p.nvent1)

# 一些数据管理来绘制估计的生存曲线
ipwgph <- merge(ip.qmk0,pwsm1, by=c("time", "timesq") )
ipw.aph$surff <-ipw.ah$sv1-pwgrph$surv0

# 绘制
ggplot(ip.gph, ae

通过g-formula估计生存曲线

#  带有协变量的风险模型的拟合情况

g.mo <- glm(event==0 ~ qsm

# 创建数据集,包括每个治疗水平下的所有时间点 
# 每个人在每个治疗水平下的所有时间点
gf.qmk <- exanos(nfs, cunt=120, cotis.cl=F) 
gf.qm0$te <- rep(q(0, 119), now(nhf))
gqm0$tesq <- gqk0$tie^2
gqsk0$qmk <- 0

gfqsk1 <- gf.qm0
gf.sk1$mk <- 1

gfqk0$p.vnt0 <- predict(g.mdel, g.qk0, type="response")
gfqk1$p.eent1 <- predict(gf.mol, gf.mk1, type="response")


# 绘图
ggplot(gf.graph

通过结构嵌套AFT模型估计中位生存时间比率

# 对数据进行一些预处理


# 
modelA <- glm(qsmk ~ sex + 
nhs$pqsk <- predict(moeA, nhe, type="response") 
d <- nes[!is.na(hf$surve),] # 只选择有观察到的死亡时间的人


# 定义需要被最小化的估计函数
smf <- function(pi){
  
  # 创建delta指标
  if (psi>=0){
    delta <- ifelse
                    1, 0)
  } else if (psi < 0) {
    dlta <- ifelse
  }
  
 
  # 协方差
  sgma <- t(at) %*% smat
  if (sa == 0){
    siga <- 1e-16
  }
  etm <- svl*solve(sia)*t(sal)
  return(etmeq)
}

res <- optimize
# 使用简单的分割法找到95%置信度下限和上限的估计值
frcf <- function(x){
  return(smef(x) - 3.84)
}

if (bfuc < 3.84){
  # 找到sumeef(x)>3.84的估计值
  
  # 95%CI的下限

  while (tetlw < 3.84 & cnlow < 100){
    psl <- pilw - incre
    teslow <- sumeef(pslw)
    cunlow <- cunlow + 1
  }
  
  # 95%CI的上限值
 
  while (tsigh < 3.84 & onhih < 100){
    phigh <- pshih + inrem
    testig <- sumeef(pihigh)
    cunhgh <- cuntigh + 1
  }
  
  # 使用分切法进行更好的估计
  if ((tstig > 3.84) & (tslw > 3.84)){
    
    # 分割法
   
    cont <- 0
    dif <- right - left
    
    while {
      test <- fmiddle * fleft
      if (test < 0){
      } else {
      }
     
      diff <- right - left
    }
    
    psi_high <- middle
    objfunc_high <- fmiddle + 3.84
    
    # 95%CI的下限
    left <- psilow
   
    
    while(!){
      test <- fmiddle * fleft
      if (test < 0)


最受欢迎的见解

1.R语言绘制生存曲线估计|生存分析|如何R作生存曲线图

2.R语言生存分析可视化分析

3.R语言如何在生存分析与Cox回归中计算IDI,NRI指标

4.r语言中使用Bioconductor 分析芯片数据

5.R语言生存分析数据分析可视化案例

6.r语言ggplot2误差棒图快速指南

7.R 语言绘制功能富集泡泡图

8.R语言如何找到患者数据中具有差异的指标?(PLS—DA分析)

9.R语言中的生存分析Survival analysis晚期肺癌患者4例

  网络协议 最新文章
使用Easyswoole 搭建简单的Websoket服务
常见的数据通信方式有哪些?
Openssl 1024bit RSA算法---公私钥获取和处
HTTPS协议的密钥交换流程
《小白WEB安全入门》03. 漏洞篇
HttpRunner4.x 安装与使用
2021-07-04
手写RPC学习笔记
K8S高可用版本部署
mySQL计算IP地址范围
上一篇文章      下一篇文章      查看所有文章
加:2022-05-12 16:42:19  更:2022-05-12 16:42:36 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 0:56:16-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码